PageRank for Product Image Search

Yushi Jing1 Shumeet Baluja2

1College of Computing
Georgia Institute of Technology
Atlanta GA

2Google, Inc.
1600 Amphitheater Parkway
Mountain View CA

WWW 2008, April 2008, Beijing, China
To incorporate visual aspects of images into selecting of images for describing products to buy

Figure: Google Product Search
Outline

1 Background
 - Current Image Search Methods
 - Applying Object Detection to Image Search
 - Detecting and Applying Low-Level Features

2 Approach and Algorithm
 - Reranking Results From Image Search
 - Computing Low-Level Features
 - From Features to Similarity
 - From Similarity to Centrality
 - From Centrality to Reranking

3 Experimental Results
 - User Evaluation (Subjective)
 - Click Study (Objective)
Outline

1. Background
 - Current Image Search Methods
 - Applying Object Detection to Image Search
 - Detecting and Applying Low-Level Features

2. Approach and Algorithm
 - Reranking Results From Image Search
 - Computing Low-Level Features
 - From Features to Similarity
 - From Similarity to Centrality
 - From Centrality to Reranking

3. Experimental Results
 - User Evaluation (Subjective)
 - Click Study (Objective)
Popular search engines for images do not use image features to rank images

Instead, the following are commonly used:

- anchor-text
- image name
- surrounding text on the webpage
Reasons for Text-Based Image Search

- Text-based search is well-studied and successful
- Object recognition still largely unsolved
- Computational complexity of computer vision tasks
Problem With Not Looking At Image Itself

- Results are often inconsistent and uncontrolled in terms of quality and in terms of content
Outline

1 Background
- Current Image Search Methods
- Applying Object Detection to Image Search
- Detecting and Applying Low-Level Features

2 Approach and Algorithm
- Reranking Results From Image Search
- Computing Low-Level Features
- From Features to Similarity
- From Similarity to Centrality
- From Centrality to Reranking

3 Experimental Results
- User Evaluation (Subjective)
- Click Study (Objective)
Previous Method to Use Vision to Rank Images

The algorithm

- Construct models of categories of objects trained from top search results
- Rerank images based on their fit to the model

The problem

- Assumption of one homogeneous object category per query is unrealistic
- Can potentially maximize relevance but not diversity
Moving Away from Object Detection and Towards Local Features

- Authors’ approach does not rely on first detecting *objects*
- Instead, low-level features that are invariant to degradations such as scale and orientation are used
Outline

1 Background
 - Current Image Search Methods
 - Applying Object Detection to Image Search
 - Detecting and Applying Low-Level Features

2 Approach and Algorithm
 - Reranking Results From Image Search
 - Computing Low-Level Features
 - From Features to Similarity
 - From Similarity to Centrality
 - From Centrality to Reranking

3 Experimental Results
 - User Evaluation (Subjective)
 - Click Study (Objective)
Goal: Find Common Features Among Images

Difficulties: Common features may be...

- in any orientation (rotated)
- anywhere in the image
- at any scale (relative size)
- not the main focus of the image (in the background)
- a non-standard color

Figure: Similarity measurement must handle potential rotation, scale and perspective transformations.
Outline

1 Background
- Current Image Search Methods
- Applying Object Detection to Image Search
- Detecting and Applying Low-Level Features

2 Approach and Algorithm
- Reranking Results From Image Search
- Computing Low-Level Features
- From Features to Similarity
- From Similarity to Centrality
- From Centrality to Reranking

3 Experimental Results
- User Evaluation (Subjective)
- Click Study (Objective)
Task from User Perspective

What does the user want?

1. Use existing Google image search algorithm to find the top k images given a verbal query
2. Rerank top k images to maximize relevance and diversity
Goal of Image Search Engines

- Retrieve image results that are relevant
- Retrieve image results that are diverse enough to cover variations of visual or semantic concepts
- Here: Reduce top 1000 to representative 10
Graph Model

Model the *imaginary user behavior* given the visual similarities of the images to be ranked.

- Treat images as web documents
- Treat similarities as probabilistic *visual hyperlinks* (vislinks)
- Estimate the probability of images being visited by a user following these vislinks
- Images with more estimated visits are ranked higher
Vislinks Versus Real Links

- Related web documents are connected by manually defined hyperlinks.
- For images, authors compute vislinks explicitly as a function of visual similarities.
- Idea: a user views one image, other similar images may also be of interest.
- If image u has a vislink to image v, then there is some probability that the user will jump from u to v.
 - *Random Surfer Model*
Outline

1 Background
- Current Image Search Methods
- Applying Object Detection to Image Search
- Detecting and Applying Low-Level Features

2 Approach and Algorithm
- Reranking Results From Image Search
- Computing Low-Level Features
 - From Features to Similarity
 - From Similarity to Centrality
 - From Centrality to Reranking

3 Experimental Results
- User Evaluation (Subjective)
- Click Study (Objective)
Similarity Measurement

- Global features such as color histograms and shape analysis are too restrictive for the breadth of images that need to be handled
- Local descriptors contain a richer set of image information and are relatively stable under different transformations
- Examples of local features:
 - Harris Corners
 - Scale Invariant Feature Transform (SIFT)
 - Shape Context
 - Spin Images

Figure: Example of use of corners (CSE 152)
Use of Local Features

- Authors use SIFT features with a Difference of Gaussian (DoG) interest point detector and orientation histogram feature representation as image features.

Figure: Image taken from Alice Chu and Sparta Cheung from CSE 190a
Difference of Gaussian Interest Point Detector

- DoG interest point detector builds a stack of scaled images by iteratively applying Gaussian filters to the original image.
- Adjacent Gaussian images are subtracted to create DoG images.
Using DoG Image Pyramid

- Characteristic scale associated with each of the interest points can be estimated by finding the local extrema over the scale space.
- Interest points located at local extrema of 2D image space and scale space are selected.
- Gradient map is computed for the region around the interest point and divided into a collection of subregions.
- Orientation histograms can then be computed.
- Final descriptor is a 128 dimensional real valued vector by concatenating 4x4 orientation histogram with 8 bins.
Outline

1 Background
- Current Image Search Methods
- Applying Object Detection to Image Search
- Detecting and Applying Low-Level Features

2 Approach and Algorithm
- Reranking Results From Image Search
- Computing Low-Level Features
- From Features to Similarity
- From Similarity to Centrality
- From Centrality to Reranking

3 Experimental Results
- User Evaluation (Subjective)
- Click Study (Objective)
Defining Similarity

Given two images u and v, and their corresponding descriptor vector $D_u = (d_1^u, d_2^u, ..., d_{128}^u)$ and $D_v = (d_1^v, d_2^v, ..., d_{128}^v)$, define similarity between two images as the number of interest points shared between two images divided by their average number of interest points.
Outline

1 Background
 - Current Image Search Methods
 - Applying Object Detection to Image Search
 - Detecting and Applying Low-Level Features

2 Approach and Algorithm
 - Reranking Results From Image Search
 - Computing Low-Level Features
 - From Features to Similarity
 - From Similarity to Centrality
 - From Centrality to Reranking

3 Experimental Results
 - User Evaluation (Subjective)
 - Click Study (Objective)
Abstract Problem Statement

Given a graph with vertices and a set of weighted edges, define and measure the “importance” of each of the vertices

- vertices = images
- edge weights = similarity
Importance of Images

Definition of importance: eigenvector centrality

- Eigenvector Centrality is a method to combine importance of a vertex with those of its neighbors in ranking
- A vertex closer to an important vertex should rank higher than others
Eigenvector Centrality

- Defined as the principal eigenvector of a square stochastic adjacency matrix

Figure: Adjacency matrix for unweighted graph
Eigenvector Centrality (cont.)

- P is a matrix where the probability of moving from image i to image j is $p_{i,j}$
- P is symmetric and stochastic, where each row and column sums to 1
- Matrix constructed from the weights of the edges in the graph
- Ranking scores correspond to probability of arriving in each vertex by traversing through the graph
- Decision to take a particular path defined by weighted edges

$$P = \begin{pmatrix} p_{1,1} & p_{1,2} & \cdots & p_{1,j} & \cdots \\ p_{2,1} & p_{2,2} & \cdots & p_{2,j} & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ p_{i,1} & p_{i,2} & \cdots & p_{i,j} & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \end{pmatrix}$$
Image Rank

Image Rank (R) is defined as the solution to the following equation

\[R = S^* \times R \]

1. \(S = \{ S_{uv} \} \) where \(S_{uv} \) is visual similarity between image \(u \) and image \(v \)
2. \(S^* \) is the normalized, symmetrical adjacency matrix \(S \)
 - Similarities are assumed to be commutative
 - Repeatedly multiplying \(R \) by \(S^* \) yields the dominant eigenvector of the matrix \(S^* \)

Algorithm to compute \(R \):
 - Guess \(R_0 \)
 - \(R_t = S \times R_{t-1} \)
Convergence

- Image rank converges only when S^* is aperiodic and irreducible
- Incorporating a damping factor λ into the original equation, given n images, R is defined as

$$R = \lambda S^* \times R + (1 - \lambda)p$$

follow links
jump anywhere

where $p = |\frac{1}{n}|_{n \times 1}$

This is similar to the random surfer model
Outline

1 Background
- Current Image Search Methods
- Applying Object Detection to Image Search
- Detecting and Applying Low-Level Features

2 Approach and Algorithm
- Reranking Results From Image Search
- Computing Low-Level Features
- From Features to Similarity
- From Similarity to Centrality
- From Centrality to Reranking

3 Experimental Results
- User Evaluation (Subjective)
- Click Study (Objective)
Application Algorithm

- Computationally infeasible to compute similarities for all images indexed by Google
- Instead, precluster web images (based on metadata)
- Rely on existing commercial search engine for initial grouping of semantically similar images
- Given a query, extract top N results returned, create graph of visual similarity on the N images
- Compute image rank only on this subset
Queries with Homogeneous Visual Concepts

- All images look somewhat alike
- Proposed approach improves the relevance of the search results
- Achieved by identifying the vertices that are located at the center of weighted similarity graph

Figure 4: Since all the variations (B, C, D) are based on the original painting (A), A contains more matched local features than others.
Queries with Heterogeneous Visual Concepts

- Example queries are Jaguar and Apple
- The approach is able to identify a relevant and diverse set of images as top ranking results

Figure 2: Many queries like “nemo” contain multiple visual themes.
Example: Monet paintings
Outline

1 Background
 - Current Image Search Methods
 - Applying Object Detection to Image Search
 - Detecting and Applying Low-Level Features

2 Approach and Algorithm
 - Reranking Results From Image Search
 - Computing Low-Level Features
 - From Features to Similarity
 - From Similarity to Centrality
 - From Centrality to Reranking

3 Experimental Results
 - User Evaluation (Subjective)
 - Click Study (Objective)
Image Collection and Queries

- Images collected directly from the web
- Used 2000 most popular product queries (from Google product search)
- Users have strong expectations of the type of results returned
Extraction of Images and Construction of Graphs

- For each query, top 1000 search results extracted
- Similarity matrix constructed by counting number of matched local features for each pair of images
Minimizing Irrelevant Images: User Study

- Designed to study a conservative version of relevancy of the ranking results
- Mixed top 10 selected images using authors’ approach with top 10 images from Google, removing duplicates and presented to user
- Asked the user which images are least relevant to the query
- More than 150 volunteer participants chosen, and 50 queries used

Table: “Irrelevant” images per product query

<table>
<thead>
<tr>
<th></th>
<th>Image Rank</th>
<th>Google</th>
</tr>
</thead>
<tbody>
<tr>
<td>Among top 10 results</td>
<td>0.47</td>
<td>2.83</td>
</tr>
<tr>
<td>Among top 5 results</td>
<td>0.30</td>
<td>1.31</td>
</tr>
<tr>
<td>Among top 3 results</td>
<td>0.20</td>
<td>0.81</td>
</tr>
</tbody>
</table>
Another View of the Results

Table: “Irrelevant” images per product query

<table>
<thead>
<tr>
<th></th>
<th>Image Rank</th>
<th>Google</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 3 results</td>
<td>0.20</td>
<td>0.81</td>
</tr>
<tr>
<td>Next 2 results</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>Next 5 results</td>
<td>0.17</td>
<td>1.51</td>
</tr>
</tbody>
</table>
Outline

1 Background
 • Current Image Search Methods
 • Applying Object Detection to Image Search
 • Detecting and Applying Low-Level Features

2 Approach and Algorithm
 • Reranking Results From Image Search
 • Computing Low-Level Features
 • From Features to Similarity
 • From Similarity to Centrality
 • From Centrality to Reranking

3 Experimental Results
 • User Evaluation (Subjective)
 • Click Study (Objective)
Click Study: Setup

- Collected clicks for top 40 images presented by Google search results on 130 common product queries
- For the top-1000 images for each of the 130 queries, rerank them according to the approach described
- To determine if the approach would improve performance, examine the number of clicks each method received from only the top-20 images
Click Study: Results

The images selected by authors’ approach to be in the top-20 results would have received approximately 17.5% more clicks than those in the default ranking.