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Problem Statement

Goal 1: Find approximate nearest 
neighbors for a repository of over one 
billion images 

Goal 2: Perform clustering based on the 
results
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Context of the Task

• Billions of images on the web

• Modern image search is text-based, largely 
due to so many images!

• Scale makes most computer vision tasks 
infeasible in real time
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Nearest Neighbor Search (NNS):
Applications

First step for…
• Image clustering
• Object recognition and classification

Useful for…
• Organizing the images on the web by finding 
near duplicate images of items such as CD 
covers
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Outline
• Background

– Brute-force nearest neighbor search

– k-D trees

– Metric Trees

– Spill Trees

– Hybrid Spill Trees

• Image preprocessing

• Parallel computing framework and data partition

• MapReduce

• Using MapReduce for parallel version of Hybrid Spill 
Trees

• Results
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NNS: Math Framework

• Assume a d-dimensional space S

• Assume a set of points T     S

• Assume a distance measure

• Given a new point p   S, we want to find the point v   T 
that is most similar to p

⊂

∈ ∈
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Brute-force NNS

• Given a new point p   S, compute the distance 
between p and every point v   T.  

• Whichever point in T has the smallest distance 
is the nearest neighbor

∈
∈
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k-D Trees

• Axis-parallel partitions of the data

• Root of the tree represents the entire 
space 

• Invariant: the union of each level of the 
tree represents the entire space
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Example of k-D Trees

Status of k-D tree �
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Example of k-D Trees (cont.)

Status of k-D tree �
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Example of k-D Trees (cont.)

Status of k-D tree �
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Example of k-D Trees (cont.)
�Ideal case when searching:

nearest neighbor falls into the
same node as the query

query pointNN
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Example: k-D Trees (cont.)
�Unfortunate case when searching:

nearest neighbor falls into a
different node as the query

query point

NN

Must do backtracking!
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Metric (ball) Trees

• Same as k-D trees except we use 
hyperspheres to partition the data
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Example of Metric Trees

Status of metric tree �
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Example of Metric Trees (cont.)

Status of metric tree �

*Child ownership cannot 
overlap, but spheres can
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Example of Metric Trees (cont.)

Status of metric tree �

Invariant: x   sphere � d(center of sphere, x) < radius of sphere∈
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Example of Metric Trees (cont.)

query point
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Searching with Metric Trees
• Guided depth first search (DFS) with pruning

• Descend the tree to reach the hypersphere leaf node 
where the query lies

• Assign a “candidate NN”, x, with distance r from the query.

• If DFS is about to visit a node v, but no member of v can 
be within distance r from the query, prune this node (do 
not visit it or any of its children)

• This is whenever || . || .v center q v radius r− − ≥
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Spill Trees

• Similar to Metric Trees except that the 
children of a single node can share data 
points.
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Metric vs. Spill

• Let N(v) denote the set of points represented 
by node v

• Let v.lc and v.rc denote the left and right 
children of v

• In Metric Trees:

• In Spill Trees:

( ) ( . ) ( . )

( . ) ( . )

N v N v lc N v rc

N v lc N v rc

= ∪

∅ = ∩

( ) ( . ) ( . )

( . ) ( . )

N v N v lc N v rc

N v lc N v rc

= ∪

∅ ≤ ∩
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Constructing a Spill Tree

• Given a node v, we choose two pivot 
points v.lpv N(v) and v.rpv N(v), 
ideally such that they are maximally 
separated.

• Specifically,

∈∈

1, 2 ( )|| . . || max || 1 2 ||p p N vv lpv v rpv p p∈− = −
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Constructing a Spill Tree (cont.)

• Project all the data points down to the vector 

• Find the midpoint A along 

• L denotes the d-1 dimensional plane 
orthogonal to    , which goes through A.

• L is known as the decision boundary

. .u v rpv v lpv= −
� ������ �����

u
�

u
�
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Constructing a Spill Tree (cont.)

• We define two separating planes LL and LR, 
both parallel to and at distance from L

• LL and LR define a stripe, also known as the 
overlap buffer

• Metric Trees have empty stripes

• All data points to the right of LL belong in v.rc

• All data points to the left of LR belong in v.lc

• All data points in the stripe are shared by v.lc
and v.rc

τ
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Spill Tree NN Search

• Use defeatist search, which descends the 
tree according the the decision boundary 
L at each node, without backtracking, 
outputting the point x in the first leaf 
node visited.

• Not guaranteed to find the correct NN

• Wider stripe means slower search, but 
more accurate
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Drawbacks of Spill Trees

• The depth of Spill Trees varies considerably 
depending on     (where 2    is the overlap 
buffer size)

• If    =0, the Spill Tree acts as a Metric Tree

• If                             , then
and construction of a Spill Tree does not even 
terminate, giving it a depth of    

• To address this, we use Hybrid Spill Trees

τ τ

τ
|| . . || / 2v rpv v lpvτ ≥ − ( . ) ( . ) ( )N v lc N v rc N v= =

∞
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Hybrid Spill Trees

• Define a balance threshold           usually set to 70%

• For each node v, we first split the data points using 
the overlapping buffer

• If either of its children contains more than
fraction of the total data points in v, we undo the 
overlapping splitting, instead use a conventional 
metric-tree partition, and mark v as a non-
overlapping node

• This ensures that each split reduces the number of 
data points of a node by a constant factor, 
maintaining logarithmic depth of the tree

ρ <1

ρ
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Hybrid Spill Tree Search

• Hybrid of Metric Tree DFS and defeatist 
search

• Only do defeatist search on overlapping 
nodes

• For non-overlapping nodes, we still do 
backtracking as Metric Tree DFS
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The Drawbacks

• All of these algorithms were designed to 
run on a single machine

• In our case, our data cannot all fit on a 
single machine, and disk access is too slow

• Noise affects distance metric

• Curse of dimensionality

� Authors will address these drawbacks 
using a new variant of spill trees
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Outline
• Background

– Brute-force nearest neighbor search

– k-D trees

– Metric Trees

– Spill Trees

– Hybrid Spill Trees

• Image preprocessing

• Parallel computing framework and data partition

• MapReduce

• Using MapReduce for parallel version of Hybrid Spill 
Trees

• Results
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Image Preprocessing

• Normalize each image

• Scale the image to a fixed size of 64x64 
pixels (each pixel is 3 bytes)

• Convert image to Haar wavelet domain

– All but the largest 60 magnitude coefficients 
are set to 0, and the remaining ones are 
quantized to +/- 1

• So far, the feature vector is 64x64x3, 
which is still fairly large
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Image Preprocessing (cont.)

• Random projection using random unit-
length vectors is used to reduce the 
dimensionality to 100 dimensions

• 4 additional features are added:

– The average of each color channel

– The aspect ratio w/(w+h)

• Now the feature vectors are of dimensionality 
104
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Outline
• Background

– Brute-force nearest neighbor search

– k-D trees

– Metric Trees

– Spill Trees

– Hybrid Spill Trees

• Image preprocessing

• Parallel computing framework and data partition

• MapReduce

• Using MapReduce for parallel version of Hybrid Spill 
Trees

• Results
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Parallel Computing Framework

• Main challenge: all feature vectors must 
be in main memory

• In our case, feature vector = 104 
floating point numbers = 416 bytes

• On a machine with 4GB, we could fit 8 
million images

• However, we are dealing with 1 billion 
images, so we would need at least 100 
machines
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How to Partition the Data?

• One option: random partition, building a 
separate spill tree for each partition

• More intelligent option: use a metric 
tree structure

• Why Metric Trees?

– Non-overlapping children

– Saves space
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Metric Trees to Partition Data

• Take a random sample of all of the data, small enough to 
fit on one machine (1/M of the data), and build a metric 
tree for this data

• Each leaf node in this top tree defines a partition, for 
which a spill tree can be built on a separate machine
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Building the Top Tree

• Stopping condition for the leaf nodes is 
an upper bound on the leaf size

• We need each partition to fit on a single 
machine, so we set the upper limit to 
roughly this

• There is also a lower bound to prevent 
partitions from being too small



39

Outline
• Background

– Brute-force nearest neighbor search
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– Spill Trees
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• Using MapReduce for parallel version of Hybrid Spill 
Trees

• Results
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MapReduce

Map

A user-defined Map Operation is 
performed on each input key-value pair, 
generating zero or more key-value 
pairs. This phase works in parallel, with 
the input pairs being arbitrarily 
distributed across machines.



41

MapReduce (cont.)

Shuffle 

Each key-value pair generated by the 
Map phase is distributed to a subset of 
machines, based on a user defined 
Shuffle Operation of their keys. 

Within each machine the key-value 
pairs are grouped by their keys
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MapReduce (cont.)

Reduce 

A user-defined Reduce Operation is 
applied to all key-value pairs having the 
same key, producing zero or more 
output key-value pairs.
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• Background

– Brute-force nearest neighbor search

– k-D trees

– Metric Trees

– Spill Trees

– Hybrid Spill Trees
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• Using MapReduce for parallel version of Hybrid Spill 
Trees

• Results
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Generating the Sample Data

Map: For each input object, output it 
with probability 1/M

Shuffle: All objects are taken to a single 
machine

Reduce: Copy all objects to the output 
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Building the Top Tree

On one machine, build the top tree 
using the standard metric tree building 
procedure, with an upper bound U on 
the cardinality of the leaf nodes, as well 
as a lower bound L.
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Partitioning of Data and Creation of 
Leaf Subtrees

Map: For each object, find which leaf subtree it 
falls into, and output this number as the key 
along with the object

Shuffle: Each unique key is mapped to a 
different machine

Reduce: On all objects in each leaf subtree, 
apply the serial hybrid spill tree algorithm to 
create the leaf subtree
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Efficient Queries of Parallel Hybrid 
Spill Trees

• On top tree, speculatively send each 
query object to multiple leaf subtrees
when the query is close to a boundary

• This is a runtime version of the overlap 
buffer

• The benefit is that fewer machines are 
required to hold the leaf subtrees since 
there are no duplicates



48

Finding Neighbors in Each Leaf Subtree

Map: For each input query, descend the top metric tree.  
At each node in the top tree, the query may be sent to 
both children if it falls within the pseudo-overlap 
buffer.  Generate one key-value pair for each leaf 
subtree that is searched.

Shuffle: Each distinct key is mapped to a different 
machine that holds the appropriate subtree.

Reduce: Standard hybrid spill tree search is used for 
the objects routed to each of the subtrees, and the k-
NN lists for each query are generated.
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Combining the k-NN Lists

Map: Copy each query and k-NN list pair 
to the output

Shuffle: The queries are partitioned 
randomly (by their numerical value)

Reduce: The k-NN lists for each query 
are merged, keeping only the k objects 
closest to the query
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Clustering Procedure

1. Compute kNN lists for each image

2. Apply a threshold to drop images that are 
too far apart

3. Drop singleton images from the 1.5 billion 
image set, leaving around 200 million 
images

4. The result is 200 million prototype clusters, 
which are further combined

5. Union-find algorithm is then applied on one 
machine
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Clustering Procedure
(MapReduce)

Map: Input is the kNN list for each image, as well 
as the distance to each of those images.   

1. Apply a threshold to the distances, which 
shortens the neighbor list.  

2. The list is treated as a prototype cluster, and 
reordered such that the lowest image number 
is first.  

3. Generated output consists of this lowest 
number as the key, and the value is the whole 
set.  

4. Images with no neighbors within the threshold 
are dropped.
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Clustering Procedure 
(MapReduce cont.)

Shuffle: The keys (image numbers) are 
partitioned randomly (by their numerical 
value)

Reduce: Within a single set of results, the 
standard union-find algorithm is used to 
combine the prototype clusters
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Experiments

• Two main datasets used

– A smaller and labeled dataset that has 
3385 images

– A larger, unlabeled dataset containing 
around 1.5 billion images
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Clustering Results

• On the smaller set, for each pair of 
images, we compute the distance 
between their feature vectors

• After varying the distance threshold, we 
compute clusters by joining all pairs of 
images which are within the threshold

• Each image pair within each cluster is 
then checked against manual labeling
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Clustering Results for Large Set

• Entire processing time for 1.5 billion 
images was less than 10 hours on 2000 
CPUs

• A significant part of the time was spent 
just on a few machines as the sizes of 
the subtrees varied considerably

• 50 million clusters found, containing 
200 million duplicated images
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Clustering Results for Large Set 
(cont.)

• The most common cluster size is two 
(because there are often thumbnail and 
full size image pairs)

• Usually the clusters are accurate but 

• Sometimes clusters contain images that 
are far apart
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Visual Results


