
1

Clustering Billions of Images with
Large Scale Nearest Neighbor Search

Presented by Dafna Bitton on May 6th, 2008
for CSE 291

IEEE Workshop on Applications of Computer Vision
February 2007

Ting Liu, Charles Rosenberg, Henry A. Rowley

2

Problem Statement

Goal 1: Find approximate nearest
neighbors for a repository of over one
billion images

Goal 2: Perform clustering based on the
results

3

Context of the Task

• Billions of images on the web

• Modern image search is text-based, largely
due to so many images!

• Scale makes most computer vision tasks
infeasible in real time

4

Nearest Neighbor Search (NNS):
Applications

First step for…
• Image clustering
• Object recognition and classification

Useful for…
• Organizing the images on the web by finding
near duplicate images of items such as CD
covers

5

Outline
• Background

– Brute-force nearest neighbor search

– k-D trees

– Metric Trees

– Spill Trees

– Hybrid Spill Trees

• Image preprocessing

• Parallel computing framework and data partition

• MapReduce

• Using MapReduce for parallel version of Hybrid Spill
Trees

• Results

6

NNS: Math Framework

• Assume a d-dimensional space S

• Assume a set of points T S

• Assume a distance measure

• Given a new point p S, we want to find the point v T
that is most similar to p

⊂

∈ ∈

7

Brute-force NNS

• Given a new point p S, compute the distance
between p and every point v T.

• Whichever point in T has the smallest distance
is the nearest neighbor

∈
∈

8

k-D Trees

• Axis-parallel partitions of the data

• Root of the tree represents the entire
space

• Invariant: the union of each level of the
tree represents the entire space

9

Example of k-D Trees

Status of k-D tree �

10

Example of k-D Trees (cont.)

Status of k-D tree �

11

Example of k-D Trees (cont.)

Status of k-D tree �

12

Example of k-D Trees (cont.)
�Ideal case when searching:

nearest neighbor falls into the
same node as the query

query pointNN

13

Example: k-D Trees (cont.)
�Unfortunate case when searching:

nearest neighbor falls into a
different node as the query

query point

NN

Must do backtracking!

14

Metric (ball) Trees

• Same as k-D trees except we use
hyperspheres to partition the data

15

Example of Metric Trees

Status of metric tree �

16

Example of Metric Trees (cont.)

Status of metric tree �

*Child ownership cannot
overlap, but spheres can

17

Example of Metric Trees (cont.)

Status of metric tree �

Invariant: x sphere � d(center of sphere, x) < radius of sphere∈

18

Example of Metric Trees (cont.)

query point

19

Searching with Metric Trees
• Guided depth first search (DFS) with pruning

• Descend the tree to reach the hypersphere leaf node
where the query lies

• Assign a “candidate NN”, x, with distance r from the query.

• If DFS is about to visit a node v, but no member of v can
be within distance r from the query, prune this node (do
not visit it or any of its children)

• This is whenever || . || .v center q v radius r− − ≥

20

Spill Trees

• Similar to Metric Trees except that the
children of a single node can share data
points.

21

Metric vs. Spill

• Let N(v) denote the set of points represented
by node v

• Let v.lc and v.rc denote the left and right
children of v

• In Metric Trees:

• In Spill Trees:

() (.) (.)

(.) (.)

N v N v lc N v rc

N v lc N v rc

= ∪

∅ = ∩

() (.) (.)

(.) (.)

N v N v lc N v rc

N v lc N v rc

= ∪

∅ ≤ ∩

22

Constructing a Spill Tree

• Given a node v, we choose two pivot
points v.lpv N(v) and v.rpv N(v),
ideally such that they are maximally
separated.

• Specifically,

∈∈

1, 2 ()|| . . || max || 1 2 ||p p N vv lpv v rpv p p∈− = −

23

Constructing a Spill Tree (cont.)

• Project all the data points down to the vector

• Find the midpoint A along

• L denotes the d-1 dimensional plane
orthogonal to , which goes through A.

• L is known as the decision boundary

. .u v rpv v lpv= −
� ������ �����

u
�

u
�

24

Constructing a Spill Tree (cont.)

• We define two separating planes LL and LR,
both parallel to and at distance from L

• LL and LR define a stripe, also known as the
overlap buffer

• Metric Trees have empty stripes

• All data points to the right of LL belong in v.rc

• All data points to the left of LR belong in v.lc

• All data points in the stripe are shared by v.lc
and v.rc

τ

25

26

Spill Tree NN Search

• Use defeatist search, which descends the
tree according the the decision boundary
L at each node, without backtracking,
outputting the point x in the first leaf
node visited.

• Not guaranteed to find the correct NN

• Wider stripe means slower search, but
more accurate

27

Drawbacks of Spill Trees

• The depth of Spill Trees varies considerably
depending on (where 2 is the overlap
buffer size)

• If =0, the Spill Tree acts as a Metric Tree

• If , then
and construction of a Spill Tree does not even
terminate, giving it a depth of

• To address this, we use Hybrid Spill Trees

τ τ

τ
|| . . || / 2v rpv v lpvτ ≥ − (.) (.) ()N v lc N v rc N v= =

∞

28

Hybrid Spill Trees

• Define a balance threshold usually set to 70%

• For each node v, we first split the data points using
the overlapping buffer

• If either of its children contains more than
fraction of the total data points in v, we undo the
overlapping splitting, instead use a conventional
metric-tree partition, and mark v as a non-
overlapping node

• This ensures that each split reduces the number of
data points of a node by a constant factor,
maintaining logarithmic depth of the tree

ρ <1

ρ

29

Hybrid Spill Tree Search

• Hybrid of Metric Tree DFS and defeatist
search

• Only do defeatist search on overlapping
nodes

• For non-overlapping nodes, we still do
backtracking as Metric Tree DFS

30

The Drawbacks

• All of these algorithms were designed to
run on a single machine

• In our case, our data cannot all fit on a
single machine, and disk access is too slow

• Noise affects distance metric

• Curse of dimensionality

� Authors will address these drawbacks
using a new variant of spill trees

31

Outline
• Background

– Brute-force nearest neighbor search

– k-D trees

– Metric Trees

– Spill Trees

– Hybrid Spill Trees

• Image preprocessing

• Parallel computing framework and data partition

• MapReduce

• Using MapReduce for parallel version of Hybrid Spill
Trees

• Results

32

Image Preprocessing

• Normalize each image

• Scale the image to a fixed size of 64x64
pixels (each pixel is 3 bytes)

• Convert image to Haar wavelet domain

– All but the largest 60 magnitude coefficients
are set to 0, and the remaining ones are
quantized to +/- 1

• So far, the feature vector is 64x64x3,
which is still fairly large

33

Image Preprocessing (cont.)

• Random projection using random unit-
length vectors is used to reduce the
dimensionality to 100 dimensions

• 4 additional features are added:

– The average of each color channel

– The aspect ratio w/(w+h)

• Now the feature vectors are of dimensionality
104

34

Outline
• Background

– Brute-force nearest neighbor search

– k-D trees

– Metric Trees

– Spill Trees

– Hybrid Spill Trees

• Image preprocessing

• Parallel computing framework and data partition

• MapReduce

• Using MapReduce for parallel version of Hybrid Spill
Trees

• Results

35

Parallel Computing Framework

• Main challenge: all feature vectors must
be in main memory

• In our case, feature vector = 104
floating point numbers = 416 bytes

• On a machine with 4GB, we could fit 8
million images

• However, we are dealing with 1 billion
images, so we would need at least 100
machines

36

How to Partition the Data?

• One option: random partition, building a
separate spill tree for each partition

• More intelligent option: use a metric
tree structure

• Why Metric Trees?

– Non-overlapping children

– Saves space

37

Metric Trees to Partition Data

• Take a random sample of all of the data, small enough to
fit on one machine (1/M of the data), and build a metric
tree for this data

• Each leaf node in this top tree defines a partition, for
which a spill tree can be built on a separate machine

38

Building the Top Tree

• Stopping condition for the leaf nodes is
an upper bound on the leaf size

• We need each partition to fit on a single
machine, so we set the upper limit to
roughly this

• There is also a lower bound to prevent
partitions from being too small

39

Outline
• Background

– Brute-force nearest neighbor search

– k-D trees

– Metric Trees

– Spill Trees

– Hybrid Spill Trees

• Image preprocessing

• Parallel computing framework and data partition

• MapReduce

• Using MapReduce for parallel version of Hybrid Spill
Trees

• Results

40

MapReduce

Map

A user-defined Map Operation is
performed on each input key-value pair,
generating zero or more key-value
pairs. This phase works in parallel, with
the input pairs being arbitrarily
distributed across machines.

41

MapReduce (cont.)

Shuffle

Each key-value pair generated by the
Map phase is distributed to a subset of
machines, based on a user defined
Shuffle Operation of their keys.

Within each machine the key-value
pairs are grouped by their keys

42

MapReduce (cont.)

Reduce

A user-defined Reduce Operation is
applied to all key-value pairs having the
same key, producing zero or more
output key-value pairs.

43

Outline
• Background

– Brute-force nearest neighbor search

– k-D trees

– Metric Trees

– Spill Trees

– Hybrid Spill Trees

• Image preprocessing

• Parallel computing framework and data partition

• MapReduce

• Using MapReduce for parallel version of Hybrid Spill
Trees

• Results

44

Generating the Sample Data

Map: For each input object, output it
with probability 1/M

Shuffle: All objects are taken to a single
machine

Reduce: Copy all objects to the output

45

Building the Top Tree

On one machine, build the top tree
using the standard metric tree building
procedure, with an upper bound U on
the cardinality of the leaf nodes, as well
as a lower bound L.

46

Partitioning of Data and Creation of
Leaf Subtrees

Map: For each object, find which leaf subtree it
falls into, and output this number as the key
along with the object

Shuffle: Each unique key is mapped to a
different machine

Reduce: On all objects in each leaf subtree,
apply the serial hybrid spill tree algorithm to
create the leaf subtree

47

Efficient Queries of Parallel Hybrid
Spill Trees

• On top tree, speculatively send each
query object to multiple leaf subtrees
when the query is close to a boundary

• This is a runtime version of the overlap
buffer

• The benefit is that fewer machines are
required to hold the leaf subtrees since
there are no duplicates

48

Finding Neighbors in Each Leaf Subtree

Map: For each input query, descend the top metric tree.
At each node in the top tree, the query may be sent to
both children if it falls within the pseudo-overlap
buffer. Generate one key-value pair for each leaf
subtree that is searched.

Shuffle: Each distinct key is mapped to a different
machine that holds the appropriate subtree.

Reduce: Standard hybrid spill tree search is used for
the objects routed to each of the subtrees, and the k-
NN lists for each query are generated.

49

Combining the k-NN Lists

Map: Copy each query and k-NN list pair
to the output

Shuffle: The queries are partitioned
randomly (by their numerical value)

Reduce: The k-NN lists for each query
are merged, keeping only the k objects
closest to the query

50

Clustering Procedure

1. Compute kNN lists for each image

2. Apply a threshold to drop images that are
too far apart

3. Drop singleton images from the 1.5 billion
image set, leaving around 200 million
images

4. The result is 200 million prototype clusters,
which are further combined

5. Union-find algorithm is then applied on one
machine

51

Clustering Procedure
(MapReduce)

Map: Input is the kNN list for each image, as well
as the distance to each of those images.

1. Apply a threshold to the distances, which
shortens the neighbor list.

2. The list is treated as a prototype cluster, and
reordered such that the lowest image number
is first.

3. Generated output consists of this lowest
number as the key, and the value is the whole
set.

4. Images with no neighbors within the threshold
are dropped.

52

Clustering Procedure
(MapReduce cont.)

Shuffle: The keys (image numbers) are
partitioned randomly (by their numerical
value)

Reduce: Within a single set of results, the
standard union-find algorithm is used to
combine the prototype clusters

53

Outline
• Background

– Brute-force nearest neighbor search

– k-D trees

– Metric Trees

– Spill Trees

– Hybrid Spill Trees

• Image preprocessing

• Parallel computing framework and data partition

• MapReduce

• Using MapReduce for parallel version of Hybrid Spill
Trees

• Results

54

Experiments

• Two main datasets used

– A smaller and labeled dataset that has
3385 images

– A larger, unlabeled dataset containing
around 1.5 billion images

55

Clustering Results

• On the smaller set, for each pair of
images, we compute the distance
between their feature vectors

• After varying the distance threshold, we
compute clusters by joining all pairs of
images which are within the threshold

• Each image pair within each cluster is
then checked against manual labeling

56

57

Clustering Results for Large Set

• Entire processing time for 1.5 billion
images was less than 10 hours on 2000
CPUs

• A significant part of the time was spent
just on a few machines as the sizes of
the subtrees varied considerably

• 50 million clusters found, containing
200 million duplicated images

58

Clustering Results for Large Set
(cont.)

• The most common cluster size is two
(because there are often thumbnail and
full size image pairs)

• Usually the clusters are accurate but

• Sometimes clusters contain images that
are far apart

59

Visual Results

