Distributed Learning of Lane-Selection Strategies for Traffic Management

Presented by: Dave Kauchak
Department of Computer Science
University of California, San Diego
dkauchak@cs.ucsd.edu

Traffic Management

- Reduce congestion
- Increase throughput
- Reduce travel time
- Increase safety
Previous methods

- Traffic signal control
- Highway ramp metering
- Mandatory lane selection
- Speed limit selection
- Increased road size

Car-centered traffic management

- Cars take actions to improve traffic
- Lane change coordination
- Goals:
 - Maintain desired speeds
 - Minimize lane changes
 - Increase throughput
Traffic as a distributed AI task

- Car = individual agent
- Environment = multilane roadway
- Choices = \{move left, stay, move right\}

An example
Information available to agents

18 Inputs:
Current speed
Desired speed
8 Surrounding relative speeds
8 smart/greedy

Driver oriented goals

\[
P(C) = \frac{\sum_{i=1}^{T} \sum_{j=1}^{N} (actual - desired)^2}{TN} + 60 \cdot \frac{\sum_{i=1}^{N} L_i}{TN}
\]

Maintain desired speed: average difference between desired and actual
Minimize lane changes: average # of lane changes

actual = actual speed \quad Li = # lane changes over T steps
desired = desired speed \quad N = number of cars
T = # time steps \quad C = set of cars

Prefer lane change if speed is wrong by > 8
The agent controller

For example, if car A is trying to move left (up):

- Not safe
- Not safe
- Not valid
- OK

The controller setup

- Feed forward neural network
- 18 inputs
- 12 hidden units
- 3 outputs

Current Speed
Error from Desired Speed
Left Ahead Speed
Left Side Speed
Left Behind Speed
Center Ahead Speed
Center Behind Speed
Right Ahead Speed
Right Side Speed
Right Behind Speed
Left Ahead Priority
Left Behind Priority
Center Ahead Priority
Center Behind Priority
Right Ahead Priority
Right Behind Priority

Move Left
Stay Center
Move Right
Learning a control strategy

- SANE (Symbiotic Adaptive Neuro-Evolution)

To increase learning efficiency:
- Population seeder
- Local Learning

SANE

- Genetic algorithm
- Learns neural networks
- Evolves the hidden neurons
- These neurons can be combined to form neural networks
- Population members (neurons) are represented by connections with weights
Creating a network from neurons

Three neurons:

<table>
<thead>
<tr>
<th>label</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.242</td>
</tr>
<tr>
<td>212</td>
<td>5.811</td>
</tr>
<tr>
<td>65</td>
<td>-0.44</td>
</tr>
</tbody>
</table>

Connection 1 Connection 2 Connection 3

If connection label < 127 then connection goes to an input unit number (label mod I), otherwise to an output unit number (label mod O)

SANE Algorithm

- Break each starting network into component neurons
- Repeat the following for some number of iterations:
 - Calculate average fitness for each neuron (next slide)
 - Rank neurons and pair each neuron in the top quarter with a neuron of higher fitness
 - Create two offspring doing a one point crossover (i.e. swap at one point along length):
 - Perform random mutation .1% of the time
Calculating average fitness values

Set each neuron’s fitness to 0
Repeat some number of times:
 Select n neurons randomly from the population
 Create a neural network from selected neurons
 Evaluate network on given task
 Add network’s score to each neuron’s fitness
Calculate each neuron’s average fitness

Population seeder

- Create initial strategies using general domain knowledge
 - (desired < 55 mph) & (right open) -> move right
 - (In leftmost) & (desired of car behind > desired) & (right open) -> change right
 - (actual of car in front < desired) & (left open) -> change left
 - (actual of car in front < desired) & !(left open) & (right open) -> change right
- Polite strategy = all 4 rules
- Selfish strategy = last 2 rules
Population seeder continued

- Create input and output pairs by applying rules of thumb in simulator:
 - Randomly initialize some number of networks
 - Use backpropagation to train networks based on input output pairs
 - Initial strategies: 25% learned and 75% random

Local Learning

- Sample performance every 10 simulated seconds
- If performance difference > some constant (10 in practice), update strategy
 - All choices in 10 second interval are reinforced
 - Similar to population seeder, use backpropagation to reinforce desired behavior
 - If performance difference is negative, reinforce other two choices
 - For example, if move left was chosen, reinforce stay and move right.
Experiments

- Simulator setup
- Evaluation of intelligent lane selection
 - Varying traffic densities
 - Lane closures
 - 4 lanes
 - Effect of selfish cars
- Contribution of each learning component

The Simulator

- All cars are the same size
- 13.3 miles of roadway which wraps around
- All cars accelerate and decelerate at the same rate:
 \[D = -2.0 \text{mph/s} \quad A = \frac{10}{\sqrt{\text{speed}}} \text{mph/s} \]
 - 0-60 in 31 s
 - 60-0 in 30 s
- No curves, hills or ramps
- Cars try and maintain desired speed
- A lane change takes 1 second
- Simulator time step is 1 second
Training

- 400 simulated seconds per evaluation of a neural network
 - 200 randomly dispersed cars
 - Desired speeds selected with mean = 60 mph and standard deviation = 8 mph
 - # smart cars selected randomly with at least 5% smart (all others are selfish)
 - Lane closures last for one mile and are in either rightmost or leftmost lane
- Final Strategy is chosen by keeping each consecutive new “champion” during training and picking the best of these on ten 2000 second evaluations

Testing

Testing involves test specific parameters such as # of cars or # of lanes
Three strategies

- Learned strategy
- Polite strategy (all 4 rules)
- Selfish strategy (last 2 rules)
 - (desired < 55 mph) & (right open) -> move right
 - (In leftmost) & (desired of car behind > desired) & (right open) -> change right
 - (actual of car in front < desired) & (left open) -> change left
 - (actual of car in front < desired) & !(left open) & (right open) -> change right

Traffic density

- Tested with 50 to 400 cars on the 13.3 miles of road
 - 50 = 1 car every 1.25 miles
 - 400 = 10 cars per mile of road
 - Dense = 120 cars per mile of road (2 car lengths of separation)
- Remember, trained with 200 cars
Density results

Lane utilization as density increases

<table>
<thead>
<tr>
<th>Overall lane utilization</th>
<th>Left lane</th>
<th>Center lane</th>
<th>Right lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selfish</td>
<td>0.35</td>
<td>0.35</td>
<td>0.30</td>
</tr>
<tr>
<td>Polite</td>
<td>0.35</td>
<td>0.26</td>
<td>0.39</td>
</tr>
<tr>
<td>Learned</td>
<td>0.25</td>
<td>0.27</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Lane closures

- One mile closed
- Changed every 500 simulated seconds

4 Lane road
Lane utilization with 4 lanes

Drivers with desired speed of 80 mph drive in left lane 87% of the time vs. 57% for 3 lanes
Center two lanes are used to organize traffic

Mixing selfish and learned: speed analysis

No blocked lanes Blocked lanes
Mixing

Contributions of different learning components

- 3 learning components: population seeder, SANE and local learning module
 - SANE
 - SANE with local learning
 - SANE with population seeder
 - SANE with both local learning and population seeder
- 50 cars on 3.3 mile road without lane blockages
- 20 trial test set: 10 with 100% smart cars and 10 with a random number of smart cars
Different learning components

Future work

- On-ramps and off-ramps
- More realistic driver modeling
 - Constant desired speed
 - Soft threshold for speed tolerance
- Different performance metric (such as throughput)
- Speed control