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Introduction

Cost-sensitive learning methods learn 
policies that attempt to minimize the 
cost of a single decision.
However, in many applications, 
sequences of decisions must be made 
over time.
In this case, the optimal policy must 
consider the interactions between 
decisions.



“Why do I receive so 
much junk mail?”

Current approaches to targeted 
marketing attempt to maximize 
expected profit considering each 
campaign in isolation.
This is a greedy approach which 
often results in over-mailing.
A better approach is to maximize 
profit over a series of campaigns.



Priming and Saturation
Priming: choosing an 
action that is not profitable 
immediately but that 
increases the probability 
of response in the future.
Saturation: after a certain 
number of mailings, the 
probability of response 
per mailing decreases as 
more mail is sent.
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Reinforcement learning

In state st, the agent chooses action at according to a policy 
, and the environment transitions probabilistically.

By the Markov assumption, the next state st+1 and the reward 
rt+1 depend only on st and at , 
RL methods specify how to change the policy          as a result
of experiments to maximize the cumulative reward:
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Reinforcement learning for 
targeted marketing

States: contain customer’s demographic and 
behavioral features, and possibly environment features 
such as seasonal information and inventory data.
Actions

mail
do not mail

(possible have different types of mailings)
Rewards

Positive: revenue received from customer
Negative: cost of mailing



Value function
A value function gives the expected return for taking 
action a in state s and following a policy      thereafter:

The optimal policy        has a value function Q*(s,a)
such that                              for all s and a.
If the expected reward and the transition probabilities 
are known for every state and action, we can compute 
the optimal value function Q*(s,a) .
Using Q*(s,a) we can compute the optimal policy:

π





 === ∑

∞

=

aassrEasQ
t

t
t

00
1

,),( γπ
π

),(*maxarg)(* asQs a=π

*π
),(),(* asQasQ π≥



Q-learning
In learning situations where the environment 
parameters, the learner needs to infer a good policy 
through observation.
Q-learning starts with an initial guess of Q(s,a) and 
then updates it at each time step according to        

which can be rewritten as

Convergence to the optimal policy is guaranteed if 
every action is repeatedly tried in every reachable 
state and α decreases with time (use ε-greedy policy).
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Sarsa
Instead of maximizing over possible actions, we can 
choose the next action based on the current policy:

The name “sarsa” comes from the quintuple                       
used in the update rule.
Sarsa also converges to the optimal policy given the 
same conditions as needed for Q-learning 
convergence.
However, the policies generated during the learning 
process tend to be more conservative.
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Function Approximation

Standard RL methods assume that the 
number of states is finite.
But in targeted marketing each state 
consists of a large number of categorical 
and real-valued features representing a 
customer, resulting in a large state space.
A regression method is used to approximate 
the value function, generalizing it to states 
that have never been seen. 



Batch Reinforcement Learning

Standard RL methods assume that on-line 
interaction with the environment is possible.
In targeted marketing and other applications, it is 
not possible to directly interact with the 
environment.
But a large amount of data describing past 
transactions is available.
Batch RL uses static training data consisting of 
episodes, which are sequences of state-action-
reward triples:   

where l is the length of an episode.
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Batch-RL (sarsa)

1. Let                                             be an episode.
2. For j=1 to l – 1

3.

We repeat this procedure for each episode ei, and 
obtain                    .
We then learn a new Q-function using D.  
This process is repeated for a number of iterations.         
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Using regression, we learn an initial Q-function 
mapping states and actions to immediate rewards.



Regression Method: ProbE

The IBM ProbE learning method 
produces decision trees with 
multivariate linear regression models 
at the leaves.
Feature selection and pruning are 
performed both at the tree level and at 
the node level.



Evaluation by Simulation (1)
Because we cannot directly interact with the 
environment, it is not straightforward to 
evaluate a learned policy.
We construct a model of the environment by 
estimating the following functions:

P(s,a): the probability of response as a function 
of the state and action.
A(s,a): the amount of donation given that there 
is a response, as a function of the state and 
action.



Evaluation by Simulation (2)
The immediate reward r(s,a) can be determined by 
flipping a coin with bias P(s,a) to determine if there is a 
response:

If there is no response r(s,a)=0
If there is a response r(s,a)=A(s,a) – c, where c is the 
cost of mailing.

The next state can be found by updating each state 
variable. 

For example, ngiftall is incremented by one if there was a 
response.

We select a number of individuals and start the 
simulation by setting their initial states to be their actual 
states prior to a certain campaign. 
From then we use the policy to select actions and the 
model to calculate the rewards and next state for each 
individual, repeating this for the sequence of campaigns.



Experimental Setup
We use the donation dataset from the KDD-98 
competition.
It contains demographic data for about 100K individuals 
(training set), along with the promotion history of 22 
campaigns:

whether the individual was mailed or not
whether the individual responded or not
if the individual was mailed: date of mailing
if the individual responded: date of response

Based on the campaign information in the data, we 
compute a number of temporal features that capture the 
state of the individual at the time of each campaign. 



State representation

promrecency/timelagpromrecratio

recency/timelagrecencyratio

recent amount per gift (last 6 months)recamntpergift

number of months between first promotion and gifttimelag

number of months since last promotionpromrecency

recent amount per promotion (last 6 months)recamptperprom

total amount of recent gifts (last 6 months)totrecamnt

number of recent gifts (last 6 months)nrecgifts

number or recent promotions (last 6 months)nrecproms

total amount of gifts to dateramntall

amount of dollars of last giftlastgift

number of promotions since last giftrecency

ngiftall/numpromfrequency

number of promotions to datenumprom

number of gifts to datengiftall

income bracketincome

individual’s ageage

DescriptionVariable



Experimental Results

We compare the policies learned by Q-
learning and sarsa to the single-event 
targeting method.
As the single-event method we use ProbE 
to predict immediate rewards (profits) as a 
function of state and action.
We mail an individual if the expected reward 
for mailing exceeds that for not mailing.



Life Time Profits
Iteration number 0 
corresponds to the single-
event method.
The plots were obtained by 
averaging over 5 runs, using 
10,000 individuals and 16 
campaigns for training.
Both Q-learning and sarsa are 
significantly better than the 
single-event method. 
Q-learning is slightly better 
than sarsa, which is not 
surprising given that sarsa 
performs a local improvement 
based on the current policy.
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Rule behavior: 
Number of Mailings

The policy obtained 
by sarsa is 
significantly more 
cost-containment than 
the single-event one.
Q-learning creates a 
policy that mails to 
almost all individuals.



Rule Behavior: 
Profits per Campaign

The policy produced by sarsa generates less profits in the 
beginning and more profits in the end, as expected for RL 
methods.



Sampling for Enhanced 
Scalability
We can make our methods scale to a huge 
number of records by using random sampling.
We can also simulate on-line reinforcement 
learning with a particular policy by using just 
the data that conform to the policy.

Q-sampling: use only states for which the 
action taken in the next state is optimal 
according to the current estimate of the Q-
value function.
TD(λ)-sampling: look ahead an arbitrary 
number of states and select only those states 
in which optimal actions are taken in all 
subsequent states.



Comparison of 
Sampling Methods

By using Q-sampling and 
TD-sampling, we can 
substantially reduce the 
data set size, without 
compromising 
performance.
As the look-ahead size 
increases by 1, the 
sampling size is roughly 
cut in half (because there 
are two possible actions).



Conclusions
We presented a novel approach to sequential 
cost-sensitive decision-making, based on the 
reinforcement learning framework.
The simple model used for evaluation may not 
be capturing the behavior of customers, so 
experimentation in the real-world is needed.
Another possibility is to use the simulation 
model to learn a policy and compare it to the 
policies learned by the batch methods.


