Enhanced Hypertext Categorization using Hyperlinks

Soumen Chakrabarti, Byron Dom, Piotr Indyk
ACM SIGMOND, 1998, Seattle, WA
Presented by Yang Yu
Outline

• Challenges in hypertext categorization
• TAPER and its performance on text documents and hypertext documents
• The “Absorbing neighboring text” approach and its performance on IBM Patent Database
• The “Radius-one linkage enhanced analysis” approach and its performance on IBM Patent Database
• The The “Radius-one linkage enhanced analysis” approach and its performance on a sample of Yahoo! topic
• Comments on the paper
Challenges in Hypertext Categorization

• Hypertext documents’ authorship is highly diverse
• Some web pages are simply lists of hyperlinks and contain no direct information themselves
• Links contain semantic information which will be lost when they are treated as simple text
• Links are noisy, some links lead to related documents, but others don’t
Data Set for Evaluation

- IBM Patent server database
 - 3 first levels and 12 leaves. For each leaf, 630 documents are used for training, 300 for testing
- YAHOO topics
 - 13 top classes, 20,000 documents are used for the link locality analysis. 900 documents are used for the hyperlink only linkage enhanced analysis
TAPER: Taxonomy and Path Enhanced Retrieval

Training documents

Random Split

Statistic collection set
Store term, documents, and statistics

Construct class models

Classifier

Order features

Model validation set

Testing documents

stats

class
Features of TAPER

- Training data are split into 2 parts. Some of them are used for feature selection, others are used for create the classifiers.
- TAPER is a hierarchical categorizer, which maintains a topic tree and there is a classifier on each internal node.
- Feature Selection: Terms are ordered by decreasing ability to separate the classes, then a prefix of the sorted list is picked which can give the best classification accuracy.
- Class Models: Different ways a classifier uses to decide which child to choose. Bernoulli Model is generally better than the binary one.
Feature Selection and Class Models
Results of TAPER

- The metric is error rate, which is the percentage of documents misclassified
- Reuters: Traditional text corpus
 - Pretty good, 13% error
- IBM Patent Database
 - Worse, 36% error
- Yahoo
 - Horrible, 68% error
Linkage Analysis

- Hypertext documents are not self-contained
- When training a classifier, link graph should also be part of the input
- When evaluating a document, the neighborhood of the document should be part of the input
- Let C be set of the classes, G be the link graph, T be the collection of text of the all the documents.

The goal is to choose C such that $\Pr(C|G,T)$ is maximum.
Absorbing Neighborhood Text

- Data set for evaluation: IBM Patent Database
- Options:
 - Local: Features of TAPER are terms of this document
 - Local+Nbr: Features of TAPER are terms from both the local document and its neighbors, including all the in-neighbors and out-neighbors
 - Local+TagNbr: Features are from the same documents as in Local+Nbr. But terms from neighbor text distinguished from local terms
Result of Absorbing neighborhood text

- Error Rate
 - Local: 36%
 - Local+Nbr: 38.3%
 - Local+TagNbr: 38.2%
Explanation of the Results

• Why does neighbor text do worse
 – Frequent cross boundary linkage between topics
• Why did not tagging help
 – Tagging split a term into many forms and make it rare
 – The heuristic of feature selection and learning of class models do poorly with many noisy seldom appearing features
The Completely Supervised Case of Radius-one Linkage Enhanced Analysis

- Assumption: All neighbor classes are known
- Class information from neighbors rather than their original text are used as features of TAPER
- The basic idea is still applying Bayesian Law:
 For document D_i
 - Choose class C_i to maximize $\Pr(C_i|N_i)$, where N_i represents the collection of all neighbor documents with known classes
 - Applying Bayesian law, the goal is turned into to maximize $\Pr(N_i|C_i)\Pr(C_i)$
Options of the above Approach

• Text: Only the text of the documents (IBM patent Database are used as features of TAPER

• Link: The class names of neighbor documents are the only features. Class names are paths in a topic hierarchy e.g. 29/X/Y/Z from [29] [Metal working] [X] …

• Prefix: All prefixes of paths are used as features

• Text + Prefix: Two copies of TAPER are run. One on local text, one on prefixes. The joint distribution is the product of their marginal distribution
Results of the above Approach

• Error Rate:
 – Text: 36%
 – Link: 34%
 – Prefix: 22.1%
 – Text+Prefix: 21%

• Conclusion
 – Much better performance
 – The major benefit is from extracting prefixes of links
The Partially Supervised Case of Radius-one Linkage Analysis

- In the real world, only some or none of the neighbor classes are known
- Neighbors whose classes are known: use the class labels as the sole feature
- Neighbors whose classes are not known: Using the relaxation labeling technique
Relaxation Labeling

• Given a document d, construct the neighborhood graph around it
• Classify the neighbor document using their local text
• Iterate until convergence
 – Recompute the class for each document using both the local text and the class information of the neighbors
• The relaxation is guaranteed to converge to a consistent state provided it is initiated “close enough” to such a state
Options of the above approach

- Data Set for evaluation: IBM Patent Database
- Options:
 - Text: Only the text of the documents are used as features of TAPER
 - Link: Only the class information of neighbor documents are used as features
 - Text+Link: Two TAPERs are run on local text information and link information
 - Does Link here actually mean Prefix?
Results of the above Approach
Conclusion from the Results

• Adding link information improves accuracy
• Even when 0% neighbors have known classes, it is beneficial to add link information
• Text+Link always beats Link, but the margin is small when a large fraction of neighbors have known classes
• Text+Link is more stable than Link
Problems with the Yahoo topics

- Yahoo! documents are more diverse than the Patent’s
- The link graph of the Yahoo! documents are not complete
 - Only 28% have some out-links to some Yahoo! document
 - Only 19% have some in-links from some Yahoo! document
 - A larger fraction of documents have links to totally unrelated document
 - Co-Citation is popular in Yahoo! documents
Radius-two Linkage Analysis: Bridges

- Idea: Documents cited by many common documents are likely to be in the same topic
- A “Bridge” is a document that hint two or more other documents are in the same class
- There are II, IO, OO, OI bridges, IO bridges is more meaningful
- IO- Bridge: B is a IO-bridge for $D1$ and $D2$ iff there are links from B to both $D1$ and $D2$
Are IO-Bridges useful?
How to get the graph

- For each page D in Yahoo!, consider all the pages Di that point to it
- Each page Di is regarded as a sorted list of out-links
- For each links D' in Di check whether the class of D and D' are the same, if so, they are called coherent
- For each offset D, calculate the percentage of coherent pairs for which $(Pos(D') - Pos(D))i = D$ for some Di, D/D appears at $Pos(D)/Pos(D')$ in the out-link list of Di
Comments on this graph

• Interesting things in the graph
 – The bridge is not pure, the non-coherent rate is always significant
 – Peak does not appear at offset 0
 – The curve is quite flat, yet the coherent rate around offset 0 is somewhat higher

• Questions about the graph
 – What is it not symmetric?
 – Why the coherence is not 100% at offset 0
Locality

- There are often several segments in bridges, the out-links in each segment point to documents in the same topic.
- Closer links have larger tendency to point to documents in the same topic.
- Trading coverage for accuracy

A class C is treated as a feature of document D if there is a IO-bridge B which has 3 out links point to $D_1 D D_2$ such that the classes of D_1 and D_2 are both C, and there are no out links between D_1 and D_2 point to a known class page.
Options of the above Approach

• Data set for evaluation: A small subset of Yahoo! (about 900 documents, each of them is IO-bridged to some other Yahoo! pages)
• Text: Again, only the text of local documents are features
• IO-Bridge: For a given document D, all prefixes of the class paths of all the documents which are IO-bridged to D are treated as features of the document. (In testing, only prefixes from the training set is considered)
• IO-Bridge+Locality: Refer the previous slide
Results of the above Approach

• Error Rate:
 – Text: 68%
 – IO-Bridge: 25%
 – IO+locality: 21%

• Coverage:
 – Text: 100%
 – IO-Bridge: 75%
 – IO+locality: 62%
Comments of this paper

• First paper to combine textual / linkage features for hypertext categorization
• Good ideas (treating links as features, path prefixes)
• Inconsistent data set for different approaches
• Some results are unclear
• Some terms and formulas are unclear