Transductive Inference for Text Classification using Support Vector Machines

Thorsten Joachims

International Conference on Machine Learning, 1999

Presented by Joe Drish

CSE 254: Seminar on Learning Algorithms, 2001

Department of Computer Science and Engineering
University of California, San Diego

Introduction

Main Goals

- Introduce a new method for text classification - Transductive Support Vector Machines (TSVMs)
- Analyze why TSVMs are well-suited for text classification
- Describe a novel algorithm for training TSVMs
- Experimentally demonstrate classification improvements using TSVMs compared to standard inductive learning methods
Talk Outline

I. **Text classification**
II. Transductive inference
III. TSVMs for text classification
IV. TSVM algorithm
V. Experimental results
VI. Conclusions and future work

Text Classification

Problem
- Classify documents into multiple, exactly one, or no semantic categories
- Learn a classifier to assign categories automatically

Applications
- Netnews Filtering - find interesting news articles
- Reorganizing a document collection - automatically classify document databases after new categories are introduced
Document Preprocessing

Information Extraction
- Documents are strings of characters
- Words are represented as word stems
- Example: “computes”, “computing”, and “computer” are all mapped to the word stem “comput”
- Information retrieval research suggests that word stems work well without information loss

Documents as Feature Vectors

Feature Vectors (see Figure 1)
- Each document has one feature vector, indexed by word stems
- Each vector entry is $TF(w, x)$, the number of times word stem w_i occurs in document x

Scaling by Inverse Document Frequency (IDF)
- Each feature vector entry is multiplied by

$$IDF \ (w_i) = \log \left(\frac{n}{DF \ (w_i)} \right)$$

where n is the total number of documents, and $DF(w_i)$ is the number of documents the word w_i occurs in
- IDF scaling assigns greater weight to word stems that are infrequent across all documents, and lesser weight to frequent word stems
Talk Outline

I. Text classification
II. Transductive inference
III. TSVMs for text classification
IV. TSVM algorithm
V. Experimental results
VI. Conclusions and future work

Inductive Support Vector Machines

• Input vectors are separated into two regions: H_1 and H_2
• Margin is maximized given minimal separation error
• Data points that lie on the margin are “support vectors”
Inductive versus Transductive Learning

Objectives of Inductive and Transductive Inference

- Inductive learning: generalize for any future test set
- Transductive learning: predict the classes for a specific test set
- In transduction we use information from the given test set

Transduction using Support Vector Machines

- Inductive Support Vector Machines (SVMs) learn a decision boundary between two classes to predict labels for future test sets
- Transductive Support Vector Machines (TSVMs) attempt to minimize the number of erroneous predictions on a specific test set
- A variation of supervised and unsupervised learning

Transductive Support Vector Machines

- Positive/negative training examples are marked +/-
- Test examples are dots
- The solid line gives the TSVM separating hyperplane

Redrawn from figure 2 in [Joachims, 1999]
Talk Outline

I. Text classification
II. Transductive inference
III. TSVMs for text classification
IV. TSVM algorithm
V. Experimental results
VI. Conclusions and future work

TSVMs and Text Classification

Text Classification Task Features
- High dimensional input space (10,000 features)
- Document feature vectors are sparse
- Every feature is important, since most words are relevant

What makes TSVMs good for this task?
- TSVMs inherit properties of SVMs, which work well
- TSVMs exploit co-occurring patterns of text

Alta Vista Search Example (number of hits in year 2001)
pepper, salt: 181,827
pepper, physics: 19,425
salt: 1.9 million
physics: 4.2 million
TSVMs Using the Test Set: An Example

<table>
<thead>
<tr>
<th></th>
<th>nuclear</th>
<th>physics</th>
<th>atom</th>
<th>parsley</th>
<th>basil</th>
<th>salt</th>
<th>and</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 3 in [Joachims, 1999]

- Documents **D1** and **D6** are the training feature vectors
- Documents D2 through D5 are the test feature vectors
- D1, D2, and D3 are classified into class A
- D4, D5, and D6 are classified into class B

✓ This is possible since the test vectors D2 and D3 share a common word (atom), as do D4 and D5 (parsley)

Talk Outline

I. Text classification
II. Transductive inference
III. TSVMs for text classification
IV. **TSVM algorithm**
V. Experimental results
VI. Conclusions and future work
TSVM Training Algorithm Overview

Algorithm Overview
Input:
- labeled training examples \((\bar{x}_1, y_1), \ldots, (\bar{x}_n, y_n)\)
- unlabeled test examples \(\bar{x}^+, \ldots, \bar{x}^i\)
- \(C, C^*\) from OP(2) in [Joachims, 1999]
- num+: anticipated number of positive test examples
Output:
- predicted labels of the test examples \(y_1^+, \ldots, y_k^+\)

User Parameters
• \(C\) and \(C^*\) specify the SVM margin size
• num+ allows the tradeoff of recall versus precision
 – recall: proportion of items in the category that are actually placed in the category
 – precision: proportion of items placed in the category that are really in the category

TSVM Training Algorithm Description

Algorithm Idea
• Refer to Figure 4 in the paper, [Joachims, 1999]
• First label the test data based on inductive SVM classification
• Set the cost factors \(C_-^*\) and \(C_+^*\) to a small number

Outer loop (loop 1)
 – Increment the cost factors up to the user defined value of \(C^*\)

Inner loop (loop 2)
 – Locate two test examples for which changing the class labels leads to a decrease in the current objective function OP(2)
 – If these two examples exist, switch them

Algorithm Notes
• SVMlight (Joachims) is web software for the inductive SVM
TSVM Inner Loop

Motivation
- Goal is to minimize objective function $OP(2)$
- Algorithm will switch two examples that further minimize $OP(2)$, if two such examples exist
- Same example can have its label switched repeatedly
- $OP(2)$ decreases with every iteration
- Converges in a finite number of steps (proof given in paper)

Issues
- Why is it reasonable to switch to examples - randomness?

Talk Outline

I. Text classification
II. Transductive inference
III. TSVMs for text classification
IV. TSVM algorithm
V. **Experimental results**
VI. Conclusions and future work
Test Set Collections

Reuters-21578
- Consists of Reuters news data collected in 1987.
- ModApte split: 9,603 (75%) training and 3,299 (25%) test documents
- Can be in one or more of 10 classes (e.g., earn, grain, crude, etc.)

WebKB collection
- A collection of World Wide Web pages
- 4,183 examples: Cornell University for training, others for testing
- Can be in only one of 4 classes: course, faculty, project, student

Ohsumed corpus
- Medical documents compiled in 1991
- 10,000 training examples; 10,000 testing examples
- Can be in one or more of 5 classes (e.g., pathology, neoplasms, etc.)

Performance Metrics

Recall and Precision (defined intuitively before)
- recall: $\frac{tp}{tp + fn}$, where tp is true positives, and fn is false negatives
- precision: $\frac{tp}{tp + fp}$, where fp is false positives

Precision/Recall (P/R) Breakeven Point
- Standard measure of performance in text classification
- Defined as the value for which precision and recall are equal
- Number of false positives equals number of false negatives
Breakeven point: Recall = Precision

\[\text{Recall} = \frac{\text{tp}}{\text{tp} + \text{fn}} \]
\[\text{Precision} = \frac{\text{tp}}{\text{tp} + \text{fp}} \]

\[\text{Breakeven point} = \text{tp} = \text{fp} \]
\[\text{Recall} = \text{Precision} \]

Reuters Experiment

<table>
<thead>
<tr>
<th></th>
<th>Bayes</th>
<th>SVM</th>
<th>TSVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>earn</td>
<td>78.8</td>
<td>91.3</td>
<td>95.4</td>
</tr>
<tr>
<td>acq</td>
<td>57.4</td>
<td>67.8</td>
<td>76.6</td>
</tr>
<tr>
<td>money-fx</td>
<td>43.9</td>
<td>41.3</td>
<td>60.0</td>
</tr>
<tr>
<td>grain</td>
<td>40.1</td>
<td>56.2</td>
<td>68.5</td>
</tr>
<tr>
<td>crude</td>
<td>24.8</td>
<td>40.9</td>
<td>83.6</td>
</tr>
<tr>
<td>trade</td>
<td>22.1</td>
<td>29.5</td>
<td>34.0</td>
</tr>
<tr>
<td>interest</td>
<td>24.5</td>
<td>35.6</td>
<td>50.8</td>
</tr>
<tr>
<td>ship</td>
<td>33.2</td>
<td>32.5</td>
<td>46.3</td>
</tr>
<tr>
<td>wheat</td>
<td>19.5</td>
<td>47.9</td>
<td>54.4</td>
</tr>
<tr>
<td>corn</td>
<td>14.5</td>
<td>41.3</td>
<td>43.7</td>
</tr>
<tr>
<td>average</td>
<td>35.9</td>
<td>48.4</td>
<td>60.8</td>
</tr>
</tbody>
</table>

Results

- 17 training and 3,299 test examples
- The TSVM gives better performance on all classes
- TSVMs are better for small training sets (Figure 6)
- TSVMs are less superior for larger training sets (Figure 7)
WebKB Experiment

<table>
<thead>
<tr>
<th></th>
<th>Bayes</th>
<th>SVM</th>
<th>TSVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>course</td>
<td>57.2</td>
<td>68.7</td>
<td>93.8</td>
</tr>
<tr>
<td>faculty</td>
<td>42.4</td>
<td>52.5</td>
<td>53.7</td>
</tr>
<tr>
<td>project</td>
<td>21.4</td>
<td>37.5</td>
<td>18.4</td>
</tr>
<tr>
<td>student</td>
<td>63.5</td>
<td>70.0</td>
<td>83.8</td>
</tr>
<tr>
<td>average</td>
<td>46.1</td>
<td>57.2</td>
<td>62.4</td>
</tr>
</tbody>
</table>

Results

- 9 training and 3,957 test examples
- **course** is especially good, **project** is especially bad. Why?
 - **course** pages at Cornell do not give topic information
 - With more training examples SVM catches up to TSVM (figure 10)
 - **project** is smallest class (1/9), and pages give topic information
 - With more training examples TSVM overcomes SVM (figure 11)

Ohsumed Experiment

<table>
<thead>
<tr>
<th></th>
<th>Bayes</th>
<th>SVM</th>
<th>TSVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathology</td>
<td>39.6</td>
<td>41.8</td>
<td>43.4</td>
</tr>
<tr>
<td>cardiovascular</td>
<td>49.0</td>
<td>58.0</td>
<td>69.1</td>
</tr>
<tr>
<td>neoplasms</td>
<td>53.1</td>
<td>65.1</td>
<td>70.3</td>
</tr>
<tr>
<td>nervous System</td>
<td>28.1</td>
<td>35.5</td>
<td>38.1</td>
</tr>
<tr>
<td>immunologic</td>
<td>28.3</td>
<td>42.8</td>
<td>46.7</td>
</tr>
<tr>
<td>average</td>
<td>39.6</td>
<td>48.6</td>
<td>53.5</td>
</tr>
</tbody>
</table>

Redrawn from figure 9 in [Joachims, 1999]

Results

- 120 training and 10,000 test examples
- The TSVM gives better performance on all classes
Talk Outline

I. Text classification
II. Transductive inference
III. TSVMs for text classification
IV. TSVM algorithm
V. Experimental results
VI. Conclusions and future work

Conclusions and Future Work

TSVMs combine powerful tools
• use prior knowledge about the test set
• exploit co-occurrence properties of text
• use separating hyperplane margin (SVM)
✓ TSVMs are well-motivated for text classification
✓ Improved performance verified experimentally using three challenging datasets

Open questions
? type of concepts that benefit best from transductive learning
? better way to represent text and documents
? further exploration of better training algorithms
? extend transductive classifiers to be inductive classifiers
Questions?