
Obtaining Calibrated Probability Estimates
from Support Vector Machines

Joseph Drish
Department of Computer Science and Engineering 0114

University of California, San Diego
La Jolla, California 92037-0114

jdrish@cs.ucsd.edu

Abstract

We use a technique known as binning to convert the outputs of support
vector machine (SVM) classifiers into well-calibrated probabilities. Us-
ing the KDD’98 data set as a testbed, we evaluate predicted probabil-
ities using four metrics, and compare our results to those obtained by
Zadrozny and Elkan for naive Bayes classifiers. We stress test the lat-
est release of the LIBSVM software, and use its new functionality for
training on unbalanced data sets to find the best parameters for the SVM
classifiers. We demonstrate that using the F1 value as a metric for tun-
ing SVMs is successful for making them work on the KDD’98 data set,
which is highly unbalanced. On the other hand, we show that binning
works better for naive Bayes classifiers, and that it is difficult to avoid
overfitting directly using SVMs.

1 Introduction

In many supervised learning tasks a learned classifier automatically induces a ranking of
test examples, making it possible to determine which test examples are more likely to
belong to a certain class when compared to other test examples. However, for many appli-
cations this ranking is not sufficient, particularly when the classification decision is cost-
sensitive. In this case, it is necessary to convert the outputs of the classifier into well-
calibrated posterior probabilities. A recent paper that addresses this problem is [7], which
introduces new methods for estimating the probabilities from naive Bayes and decision tree
classifiers. This paper presents a replication of that work using Support Vector Machines
(SVMs).

Based on the theory of Structural Risk Minimization [5], SVMs learn a decision boundary
between two classes by mapping the training examples onto a higher dimensional space
and then determining the optimal separating hyperplane between that space. Given a test
examplex, the SVM outputs a score that provides the distance ofx from the separating
hyperplane. The sign of the score indicates to which classj examplex belongs, where
j ∈ {1,−1}. The problem of interest is how to calibrate that score into an accurate class
conditional posterior probability, orP(j|x).

Our solution is to use a histogram technique known as binning, which is recommended in

[7] for naive Bayes classifiers. We selected this method because of the similarities between
naive Bayes and SVM classifiers, and also because of its simplicity. The binning method
proceeds by first ranking the training examples according to their scores, then dividing them
into b subsets of equal size, called bins. The value ofb is typically chosen experimentally
such that the variance is reduced in the binned probability estimates. Given a test example
x, it is placed in the bin according to the score produced by the SVM. The corresponding
estimated probabilityP(j|x) is the fraction of training examples that actually belong to the
class that has been predicted for the test example.

The data set that we use to train and test the support vector classifiers is from the KDD’98
data mining competition. This data set contains information about persons in the past who
either did or did not make donations to a certain charity. It consists of 95,412 training
examples, each corresponding to an individual, and 481 features. The test set consists of
96,367 examples and 479 features. The training set has two additional fields: one indicating
whether or not the individual has donated, and another for the amount of the donation.
The goal is to choose individuals to solicit a donation so that overall profit is maximized,
assuming that the cost to mail a solicitation is $0.68.

In addition to being very large, the KDD’98 data set is highly unbalanced. There are only
4,843 positive examples in the training set and 4,873 positive examples in the test set. We
elected to use the LIBSVM [1] software package for learning the SVM classifiers since its
latest release contains an option to alter the SVM training specifically for unbalanced data
sets. The KDD’98 data set provides the perfect challenge to test this new functionality.
Also, LIBSVM uses John Platt’s Sequential Minimal Optimization (SMO) [3] for training,
which is the most efficient algorithm for SVM training currently known.

There are two contributions of this paper. The first is an evaluation of the quality of the
binned SVM probability estimates using the 4 metrics suggested in [7]. These are squared
error, log-loss or cross entropy, lift charts, and the profit obtained when we use the estimates
to choose individuals to solicit a donation. Our results are compared to those obtained in
[7] for naive Bayes classifiers. The second contribution is an analysis of the applicability
of SVMs on the KDD’98 data set. Specifically, we investigate how to tune the parameters
of the SVM to maximize profit, examine the extent to which SVMs overfit the training set,
and discuss how efficient SVMs are for this task.

2 Feature Selection and Preprocessing

We used the following 8 features to train the support vector classifiers:

INCOME: household income code (range 1–8)
LASTDATE: date of the most recent gift
FIRSTDATE: date of the first gift
RFA 2F: frequency code (range 1–4)
RFA 2A: amount of the last gift code (range A–G)
PEPSTRFL: RFA (recency, frequency, amount) (X or blank)
PGIFT: number of gifts/number of promotions received
TARGET B: binary indicator for response to 1997 mailing

In addition to these being the most predictive features, using only these provides an ex-
perimentally valid way to compare our results to [7], since they used the same features to
obtain their results.

The featurePGIFT is the only one not directly included in the KDD’98 data set. It is
obtained by dividing the featureNGIFTALL by the featureNUMPROM in the orginal data
set. The LIBSVM software is only able to train SVM classifiers using numerical values,

so theRFA 2A values were mapped to integers in the range 1 through 7 corresponding to
letters A through G, and thePEPSTRFLvalues were mapped to 1 and 0 corresponding to
values X and blank.

We then scaled the data so that no one feature dominated the training process. To do this,
from each feature value we subtracted the feature mean, then divided by the feature stan-
dard deviation. This is known as z-scoring the data, and is a method of scaling that prevents
outliers within a feature vector from having too much influence on the entire feature vector.

3 Tuning the SVM Classifiers

This section describes the quadratic programming (QP) problem solved by the LIBSVM
software to accomodate unbalanced data sets. We give an intuitive explanation for how
the alteration of the problem changes SVM training. The reader can refer to [5] for a
description of the original SVM QP problem formulation. We then describe our method
for determining the best penalty parameter,C+.

3.1 Training on Unbalanced Data Sets

The LIBSVM software provides an alternative method for learning classifiers on unbal-
anced data sets. The main idea is to use two parameters,C+ andC−, to tradeoff gen-
eralization ability and misclassification error for positive and negative training examples,
respectively. Formally, given a set of training vectorsxi ∈Rn, i = 1, ...l , and a vectory∈Rl

such thatyi ∈ {1,−1}, the primal SVM problem is

min
w,b,ξ

1
2

wTw+C+ ∑
yi=1

ξi +C− ∑
yi=−1

ξi (1)

yi(wTφ(xi)+b)≥ 1−ξi ,

ξi ≥ 0, i = 1, ..., l .

Its dual problem is

min
α

1
2

αTQα−eTα (2)

0≤ αi ≤C+, if yi = 1

0≤ αi ≤C−, if yi =−1

yTα = 0.

The variablee is the vector of all ones,Q is anl by l positive semidefinite matrix, andαi
are the support vectors. The functionφ maps the training vectors into a higher dimensional
space where the optimal separating hyperplane is formed. The resulting decision function
is

f (x) = sign(
l

∑
i=1

yiαiK(xi ,x)+b),

whereK(xi ,x j) = φ(xi)Tφ(x j) is the kernel. To train our SVM classifiers we use a radial
basis kernel of the formK(xi ,x j) = exp(−||xi −x j ||2/2σ2). The kernel function measures

the similarity between the vectorsxi andx j . A well chosen value forσ accomplishes the
goal of separating data clusters of one class from data clusters containing non-class mem-
bers. For this project we did not spend much time optimizing the kernel. We simply set
σ = 50 because informal experiments revealed that this value achieved the best classifica-
tion accuracy.

The important parameters from equation (1) are the penalty parametersC+ andC−. The
ratio of these two values determines how the training examples from each class are pe-
nalized. As the ratio ofC+ to C− increases, so will the rate at which the SVM classifier
predicts j = 1 for a given examplex. As the ratio ofC+ to C− decreases, the rate at which
the SVM classifier predictsj =−1 increases.

3.2 Determining the Best Value forC+

For our experiments we fixC− at 1, and determine the best ratio by varyingC+. For most
machine learning tasks the goal is to maximize accuracy on the test set. Since our ultimate
goal is to maximize profit on the test set, we would like the SVM to predict donate to as
many donors as possible, while not soliciting too many non-donors. Therefore, we would
like to balance precision and recall, which are defined below as

precision=
t p

(t p+ f p)
, recall =

t p
(t p+ f n)

.

The valuest p, f p, and f n stand for true positives, false positives, and false negatives,
respectively. A metric that measures how well precision and recall agree is called the F1
value. This is the metric we use to identify the bestC+ parameter, and is defined precisely
as

F1= 2/((1/precision)+(1/recall)).

To determine the bestC+ parameter, we learned several SVM classifiers using different
values forC+, each on 10,000 training records consisting of 509 positive examples. We
then tested these SVMs on 10,000 different training records consisting of 490 positive
examples. Table 1 shows the confusion matrix and the resulting F1 value for the different
SVM classifiers. Notice that as the value ofC+ increases, the number of solicitations
increases. As a result, the number of actual donors that we predict as donors increases,
at the expense of soliciting more non-donors. To solicit a test example is equivalent to
classifying a test example as positive.

As we increaseC+, the value of F1 increases until it reaches its peak at 8, and then mono-
tonically decreases. Even though we conjecture that the valueC+ = 8 may work best on the
KDD’98 data set for profit maximization, there is no clear intuitive link between optimiz-
ing in terms of F1 and obtaining accurate probability estimates from the SVM classifiers.
The focus of this optimization effort was an attempt to maximize profit on the test set only.

4 Converting SVM Scores into Probabilities

To transform the scores of the SVM classifiers into accurate well-calibrated probabilities,
we use a technique known as binning, which is recommended in [7] for naive Bayes clas-
sifiers. As mentioned in the introduction, the binning method proceeds by first sorting the
training examples according to their scores, and then dividing them intob equal sized sets,
or bins, each having an upper and lower bound. Given a test examplex, it is placed in a bin
according to its score. The corresponding probabilityP(j = 1|x) is the fraction of positive
training examples that fall within the bin. We setb = 10 as in [7].

Table 1:Effect of varyingC+ on SVM classification.

C+ classification solicitations tp fp fn F1
− 0.9479 35 2 33 488 0.0076
5 0.8891 709 45 664 445 0.0750

7.5 0.8704 924 59 865 431 0.0835
8 0.8670 968 64 904 426 0.0878
9 0.8551 1095 68 1027 422 0.0858
10 0.8440 1214 72 1142 418 0.0845

12.5 0.8231 1437 79 1358 411 0.0820
15 0.8086 1594 85 1509 405 0.0816
20 0.7758 1946 97 1849 393 0.0796

Using all the training examples from the training set sometimes results in overfitting the
probability estimates. To solve this problem we use a method described in [6], where 70%
of the training examples are used to learn the classifier and 30% are used for the binning
process. These subsets are stratified, meaning the proportion of positive examples in both
of them are fixed. There is no imposed lower or upper bound on SVM scores. Therefore,
when using this method it is possible for some scores from the 30% subset to fall below or
above the low and high scores, respectively, of the 70% training subset. If this happens the
corresponding probabilityP(j = 1|x) for examplex is that of the nearest bin to the score of
x.

Table 2 shows the resulting binned SVM class-conditional probability estimates. TheALL
classifiers refer to those that use all of the training set for both learning the classifier and
for the binning process. TheSPLIT classifiers refer to those that use 70% of the training
set to learn the classifier, and the remaining 30% for the binning process. The number in
parentheses corresponds to the value ofC+. We use this convention throughout the paper
to identify the SVM classifiers when explaining our results. The LIBSVM software assigns
negative scores to positively classified examples, so we expect the probability estimates to
be monotonically decreasing in the table for increasing bin number.

For the ALL classifiers, the probabilities are very large in the first couple bins, and af-
terwards severely decrease. All theSPLIT classifiers have probability estimates that are
smoothed towards the base rate for the test set, which is close to 5%. Note also for the
SPLIT classifiers, the minimum probability estimate occurs in bin 4 forC+ = 1, bin 5 for
C+ = 8, bin 6 forC+ = 15, and bin 7 forC+ = 20. For theALL classifiers the probabil-
ity estimates tend to quickly decrease monotonically, whereas the estimates for theSPLIT
classifiers slowly decrease nonmonotonically. This is an indication of severe overfitting.
When using different training examples for the binning process, positive examples are not
consistently being classified positively when they should be.

5 Evaluating the Probability Estimates

There are four methods we use to evaluate the binned SVM probability estimates. These are
squared error, log-loss or cross-entropy, lift charts, and the profit achieved when we solicit
donations according to the decisionP(j = 1|x)y(x) > $0.68, wherey(x) is the expected
donation amount for personx. Since this paper is only concerned with calibrating accurate
probabilities, the expected donation amounts are fixed and based on a regression technique
discussed in [6].

We report the mean squared error (MSE), mean log-loss (MLL), and profit in Table 3 for
the various support vector classifiers. Also included in the table are results for naive Bayes,
binned naive Bayes, using the base rate for all examples, and usingP(j = 1|x) = 1 for all

Table 2:Binned SVM probability estimates.

bin ALL (1) ALL (8) SPLIT(1) SPLIT(8) SPLIT(15) SPLIT(20)
1 0.1523 0.2080 0.0625 0.0604 0.0583 0.0534
2 0.0456 0.1157 0.0486 0.0688 0.0625 0.0548
3 0.0428 0.0770 0.0496 0.0520 0.0562 0.0615
4 0.0487 0.0238 0.0451 0.0454 0.0538 0.0569
5 0.0476 0.0169 0.0475 0.0363 0.0507 0.0489
6 0.0593 0.0308 0.0482 0.0437 0.0384 0.0493
7 0.0662 0.0258 0.0503 0.0503 0.0454 0.0402
8 0.0362 0.0053 0.0489 0.0552 0.0517 0.0531
9 0.0021 0.0022 0.0528 0.0461 0.0465 0.0479
10 0.0068 0.0020 0.0542 0.0493 0.0440 0.0416

examples (corresponding to mailing to everyone). These were copied directly from [7].

Squared error is defined as∑ j(t(j|x)− p(j|x))2, wherep(j|x) is the probability estimated
by the method for examplex and classj, andt(j|x) is the true probability of classj for x.
For data sets where true labels are known and probabilities are not known,t(j|x) is defined
to be 1 if the label ofx is j and 0 otherwise. We calculated the mean squared error for each
classifier on both the training and test sets.

Both theALL classifiers severely overfit the training data. The MSE for these are smaller
than the MSE for any other classifier on the training set, but larger than for any other
classifier on the test set. TheSPLIT classifiers overfit the training data, but not as badly. A
C+ value of 8 achieves the lowest MSE for both theALL andSPLIT classifiers. Overall,
binned naive Bayes does the best, followed bySPLIT(8).

The second metric is log-loss or cross-entropy, defined as−∑ j t(j|x) log2
p(j|x)
t(j|x) . The MLL

results for the SVM classifiers exhibit the same pattern as the results for MSE. Both the
ALL andSPLIT classifiers overfit the training data; theSPLIT classifiers do not overfit as
much. Like MSE, settingC+ = 8 for the SVM classifiers achieves the best performance,
but none of these are better than the binned naive Bayes classifier. A disadvantage of this
metric is that if any method estimatesP(j = 1|x) = 0 for any example whose actual class
is j = 1, the mean log-loss of the method is infinite. This explains the infinite entry for the
mail-to-everyone case.

Profit is the third metric we use to evaluate the probability estimates. Like in [7], the
differences in profit are much more accentuated than the differences in MSE and MLL. As
Table 3 demonstrates, the SVM classifiers are overfitting the training data. The best result
among the SVM classifiers is again theSPLIT classifier withC+ = 8, which achieves a
profit of $12,969. For theSPLIT classifiers, the amount of overfitting is roughly the same
for all values ofC+. When we use theSPLIT classifiers, although our probability estimates
are shifted toward the base rate, we still achieve a profit better than using a probability
equal to the base rate. Neither binned naive Bayes nor raw naive Bayes overfit the training
data. Overall, the best profit of $14,642 is achieved by binned naive Bayes.

The final metric we use to evaluate the probabitiy estimates are lift charts. The method
for obtaining a lift chart is explained in [7]. We repeat that explanation here for clarity.
We first sort the examples in descending order according to their scores. Given 0≤ a≤ 1,
let T(a) be the fractiona of examples with the highest scores. The lift ata is defined as
l(a) = r(a)/P(j = 1) wherer(a) is the proportion of positive examples inT(a). SVM lift
charts for the training and test sets are found in figures 1 and 2, respectively. The lift charts
for the naive Bayes and binned naive Bayes classifiers can be seen in [7].

Table 3:Probability evaluation results.

Training set Test set
classifier MSE MLL Profit MSE MLL Profit
ALL (1) 0.09325 0.26715 $25699 0.10314 0.33692 $7919
ALL (8) 0.08850 0.23948 $38040 0.10215 0.34670 $8026

SPLIT(1) 0.09596 0.28685 $13699 0.09600 0.28862 $12512
SPLIT(8) 0.09534 0.28220 $17550 0.09586 0.28763 $12969

SPLIT(15) 0.09551 0.28322 $16748 0.09592 0.28807 $12817
SPLIT(20) 0.09593 0.28604 $14700 0.09594 0.28823 $12483

NAIVE BAYES 0.10089 0.30198 $10083 0.10111 0.30400 $9531
BINNED NAIVE BAYES 0.09546 0.28336 $14897 0.09528 0.28365 $14642

ALL BASE RATE 0.09636 0.28961 $11923 0.09602 0.28880 $12252
ALL ONE 1.89848 ∞ $10790 1.89886 ∞ $10560

For the SVM training set lift chart, theALL (8) classifier performs the best overall. Between
a = 10 anda = 70, the worst classifiers are those with no bias (C+ = 1). The biasedSPLIT
classifiers all achieve about the same performance. All the scores are unusually high when
a is between 0 and 10, which is an indication of overfitting. The biased SVMs achieve
better performance on the training set lift charts than for both variations of naive Bayes.
For 10≤ a≤ 100, the lift for naive Bayes and binned naive Bayes is less than 2. For all
the biased SVM classifiers, the lift remains greater than 2 whena is between 0 and 40, and
coverges to 1 at a slightly lower rate.

For the test set, the worst SVM scores are also generated when there is no bias. Initially,
whena is between 0 and 40, both SVM classifiers usingC+ = 8 do very well, then the
SPLIT classifier withC+ = 15 tends to dominate, but only slightly. TheSPLIT classifiers
with C+ = 15 andC+ = 20 do poor initially, which is due to both of them having a relatively
low probability estimate in their first bin. As with our other metrics, settingC+ = 8 achieves
the best performance overall for SVMs. However, the test set performance of binned naive
Bayes and raw naive Bayes are better than the SVM lift charts, as they converge to 1 at a
more consistent rate. This again is evidence of SVM overfitting.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

Percent customers contacted

Li
ft

all(1)
all(8)
split(1)
split(8)
split(15)
split(20)

Figure 1: SVM lift charts for the training set.

0 10 20 30 40 50 60 70 80 90 100
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Percent customers contacted

Li
ft

all(1)
all(8)
split(1)
split(8)
split(15)
split(20)

Figure 2: SVM lift charts for the test set.

6 Discussion

The experimental results reveal that overfitting is the major problem of our support vector
classifiers. We were able to reduce overfitting somewhat by using theSPLIT classifiers,
but not enough to achieve an overall performance similar to that of the binned naive Bayes
classifier. We may be able to mitigate the problem of overfitting by selecting a different
kernel. Using a sufficiently high degree polynomial kernel has been known to be able to
generalize well without overfitting.

One promising aspect of this analysis is how much the performance of the bestC+ value
on a subset of the training set parallels the success of SVMs using the sameC+ value on
the test set. All of the probability evaluation metrics show that the best performance is
achieved when settingC+ = 8, regardless of how we trained the SVM. This indicates that
optimizingC+ in terms of the F1 value is a good idea.

Currently it is unclear whether the ratio ofC+ to C− or the values of these parameters
have the greatest impact on SVM classification. It would be interesting to experiment with
different values of these parameters on the KDD’98 data set. For example, we could set
C+ = 400 andC− = 50 for the same ratio of 8. What we have noticed is the effectC+ has
on the range of scores when classifying examples. Table 4 provides the lowest and highest
scores for the training and test sets for our SVM classifiers whenC− is fixed at 1. AsC+
increases, so does the range of scores.

Another aspect of SVMs we are interested in is how well they scale to a data set the size
of the KDD’98 data set. We trained five SVM classifiers with an RBF kernel, and set
C+ = 8 andC− = 1 using an increasing number of training examples. The results of these
experiments are shown in Table 5. We report the number of support vectors, the time in
hours it takes for the SVM to learn the classifier, and the raw classification accuracy on
the entire training and test sets. The number of support vectors generated is systematically
about half the number of total examples used to learn the classifier.

The timing results of Table 5 show that SVMs can take up to 50 hours to train. The question
of whether the LIBSVM software scales well according to these results is subjective, since
these numbers may or may not be acceptable depending on the engineering or business cir-

Table 4:Range of scores for different values ofC+.

Training set Test set
SVM(C+) low high low high

ALL (1) -1.0003 1.3156 -1.0049 1.3464
ALL (8) -2.1314 3.2473 -2.3212 2.8845

SPLIT(1) -1.0014 1.3162 -1.0042 1.3470
SPLIT(8) -2.0207 2.6436 -1.8441 2.6572

SPLIT(15) -2.3052 3.2440 -2.5326 3.5163
SPLIT(20) -2.3177 3.3035 -2.6287 3.2476

Table 5:Effect of training size on training time and raw SVM accuracy.

examples #SVs time (hours) train accuracy test accuracy
10000 6129 0.61 0.8693 0.8639
20000 10824 2.85 0.8604 0.8534
40000 20025 7.77 0.8685 0.8543
66788 32386 24.57 0.8834 0.8634
95412 45709 48.79 0.8950 0.8714

cumstances when SVMs are being used. It is important to note that increasing the number
of features would not have a largely influential effect on training time, since SVM train-
ing time is quadratic in the number of examples, independent of the number of features.
Comparing the training efficiency between SVMs and naive Bayes classifiers is beyond the
scope of this paper.

Table 5 also shows how the classification accuracy of the raw SVM increases as we include
more training examples. The classification results show that we do not lose that much
information with smaller training data, at least for this data set. An interesting result is
that using only 10,000 training examples has better raw classification accuracy than using
20,000 and 40,000 examples on both the training set and test set, and also better on the test
set when using 70% of the training set. The best performance on both the training and test
sets is achieved when we train using all of the training set, as expected.

7 Alternative Methods

Binning is a general technique that can be applied to any classifier that outputs a score
given an examplex. This method is assumed to work if the classifier ranks examples well,
which is why binning is effective for naive Bayes classifiers. There are other techniques
for probability calibration specifically designed for support vector machine classifiers. One
such method is described in [4], where the training set is used to fit a sigmoid function. The
calibrated probability estimate then becomes

P(j = 1| f) =
1

1+exp(A f +B)
.

Another method for converting the scores of SVMs into probabilities is based on a Bayesian
framework and is discussed in [2]. It would be interesting to see if these methods of cali-
bration would improve SVM performance on the KDD’98 data set.

8 Conclusion

We used a method known as binning to convert the outputs of support vector machine
classifiers into accurate posterior probabilities. We evaluated the probabilities using four
metrics, and compared our results to those obtained in [7] for naive Bayes classifiers. We
used the challenging KDD’98 data set as a testbed for this task, allowing us to stress test the
latest release of the LIBSVM software. Using new functionality provided by the software,
we were able to tune the SVMs specifically for unbalanced data sets. We used the F1
value as a metric for tuning the SVMs, which was a good idea since the F1 value that was
determined to be the best on a subset of the training set achieved the best performance on
the test set.

Our results show that probability calibration using binning works better for naive Bayes
classifiers than for support vector machine classifiers, mostly because the naive Bayes clas-
sifiers rank examples better than SVMs. The most significant problem that SVMs en-
counter is overfitting, something that is avoided by the naive Bayes classifiers. Although
it has proven to be very difficult to get SVMs to work on the KDD’98 data set, it would
be premature to say that they do not work or scale well for large, unbalanced data sets in
general. It is fair to conclude that practical usage of SVMs requires a significant amount of
user knowledge and experience.

References
[1] Chang, C.C. and Lin, C. (2001) LIBSVM: a Library for Support Vector Machines (Version 2.3)

[2] Kwok, J.T. (1995) Moderating the Outputs of Support Vector Machine Classifiers. InIEEE -
NN.

[3] Platt, J. (1999) Fast Training of Support Vector Machines using Sequential Minimal Optimiza-
tion. In Advances in Kernel Methods - Support Vector Learning.

[4] Platt, J. (1999) Probabilistic Outputs for Support Vector Machines and Comparisons to Regu-
larized Likelihood Methods. InAdvances in Large Margin Classifiers.

[5] Vapnick, V. (1998) Statistical Learning Theory. John Wiley & Sons.

[6] Zadrozny, B. and Elkan, C. (2001) Learning and making decisions when costs and probabilities
are both unknown. Technical Report CS2001-0664). University of California, San Diego.

[7] Zadrozny, B. and Elkan, C. (2001) Obtaining calibrated probability estimates from decision
trees and naive Bayesian classifiers. To appear inProceedings of the Eighteenth International
Conference on Machine Learning.

