# Using Maximum Entropy for Text Classification

Kamal Nigam, John Lafferty, Andrew McCallum (IJCAI-99 )
presented by Ari Frank

1

#### Talk Outline

- What is the Maximum Entropy Principle?
- Maximum Entropy models for text classification.
- Learning Maximum Entropy Models.
- Experimental results.
- Conclusion.

#### The Essence of Maximum Entropy

- Maximum Entropy is a technique for learning probability distributions from data.
- "Don't assume anything about your probability distribution other than what you have observed."
- Always choose the most uniform distribution subject to the observed constraints.

3

# Simple Classification Example

- An expert can classify documents into 4 classes: economics, sports, politics, art.
- The training data is a set of documents; each document is represented by a vector of words.
- We want to construct a probability distribution that represents the documents.

## First Model

- Each document must be classified into one of the classes, so:
  - P(economics) + P(sports) + P(politics) + P(art) = 1
- Without additional information, choose the model that makes the least assumptions.
  - P(economics) = P(sports) = P(politics) = P(art) = 0.25
- Least assumptions = Most Uniform.

5

# Example Cont.

- Suppose that if the word "ball" appears in the text, then p(sports | ball) = 0.7.
- How do we adjust the distribution?
  - **■** p(sports | ball) =0.7
  - P(politics | ball)=0.1
  - P(economics | ball)=0.1
  - P(art | ball)=0.1

#### What about More Observations?

- How do we factor in additional constraints?

  P(politics | Bush) =0.8, P(sports | game) =0.6,

  P(economic | stock)=0.5, ...
- Maximum Entropy modeling lets us create a distribution that abides by all these constraints, while being as uniform as possible.

7

## Why Try to be Uniform?

- Most uniform = Maximum Entropy.
- By making the distribution as uniform as possible, we don't make any additional assumptions to what is supported by the data.
- Matches intuition of how probability distributions should be estimated from data.
- Abides by the principle of Occam's Razor (least assumptions made = simplest explanation).

В

## Maximum Entropy Modeling for Text Classification

- Our training data is N pairs  $\{(d_1,c_1),...,(d_N,c_N)\}$ 
  - $c_i \in C$  classes of documents.
  - d<sub>i</sub>∈ D Set of documents. Each document is represented as a vector of word counts.
- The training set is renamed the "empirical" distribution

$$\tilde{p}(d,c) \equiv \frac{1}{N} \times \text{the number of times (d,c) appears}$$

We want to create a stochastic model for  $p(c \mid d) = \frac{p(d,c)}{p(d)}$ 

9

#### **Feature Functions**

- Features are used to capture relevant aspects of the training data.
- For example, a binary feature describing the appearance of the word ball in a sports document:

$$f_{sprots,ball}(d,c) = \begin{cases} 1 & \text{if } c = \text{sports and 'ball'appears in d} \\ 0 & \text{otherwise} \end{cases}$$

## Feature Functions cont.

■ In this paper scaled real valued features are used:

$$f_{w,c'}(d,c) = \begin{cases} 0 & \text{if } c \neq c' \\ \frac{N(d,w)}{N(d)} & \text{Otherwise} \end{cases}$$

Gives better results than binary features.

11

#### **Statistics**

■ The expected values of a feature with respect to the empirical distribution is

$$\tilde{p}(f) \equiv \sum_{d,c} \tilde{p}(d,c) \cdot f(d,c)$$

Likewise, the expected value of a feature with respect to our model p is

$$p(f) \equiv \sum_{d \in C} \widetilde{p}(d) p(c \mid d) \cdot f(d, c)$$

#### **Constraints**

■ Important statistics are used to shape the model, by forcing the model to comply with them:

$$p(f) = \tilde{p}(f)$$

■ This means that the following should hold for every feature *f*:

$$\sum_{d,c} \widetilde{p}(d) p(c \mid d) \cdot f(d,c) = \sum_{d,c} \widetilde{p}(d,c) \cdot f(d,c)$$

13

# Selecting a Model

- There can be an infinite number of models that satisfy a set of constraints.
- The maximum entropy principle dictates we select the most uniform model that satisfies the constraints.
- Uniformity is measured in terms of the conditional entropy of p(c | d):

$$H(p) \equiv -\sum_{d \in C} \widetilde{p}(d) p(c \mid d) \log p(c \mid d)$$

## The Maximum Entropy Model

- From the set of allowed probability distributions, we select the model p\* that maximizes H(p).
- p\* can always be expressed in an exponential form:

$$p(c \mid d) = \frac{1}{Z(d)} \exp \left( \sum_{i} \lambda_{i} f_{i}(d, c) \right)$$

- $\lambda_i$  weight parameters to be estimated
- Z(d) normalizing constant:

$$Z(d) = \sum_{c} \exp\left(\sum_{i} \lambda_{i} f_{i}(d, c)\right)$$

15

# Properties of p\*

- When p\* is selected from the exponential family of distributions, we are guaranteed that:
  - p\* is always well-defined, and unique.
  - p\* also maximizes the conditional log likelihood of the data:

$$L_{\tilde{p}}(p) \equiv \sum_{d \in C} \tilde{p}(d, c) \log p(c \mid d)$$

■ The likelihood space for the parameters of p is **convex with one global maximum** (unlike the typical likelihood surface for EM).

# Improved Iterative Scaling

- Start with  $\lambda_i = 0$  for all  $i \in \{1,2,...,n\}$
- Do for each  $i \in \{1,2,...,n\}$ 
  - a. Let  $\Delta \lambda_i$  be the solution to

$$\boxed{\left[\sum_{d,c} \widetilde{p}(d) p(c \mid d) f_i(d,c)\right] \exp(\Delta \lambda_i f^{\#}(d,c))} = \widetilde{p}(f_i)$$

$$\text{Where } f^{\#}(d,c) \equiv \sum_i f_i(d,c)$$

$$\text{rescaling factor}$$

- b.  $\lambda_i = \lambda_i + \Delta \lambda_i$
- 3. Go to Step 2 if not all  $\lambda_i$  have converged

#### Feature Functions: Reminder

■ In this paper scaled real valued features are used:

$$f_{w,c'}(d,c) = \begin{cases} 0 & \text{if } c \neq c' \\ \frac{N(d,w)}{N(d)} & \text{Otherwise} \end{cases}$$

■ Has the useful property that

$$f^{\#}(d,c) \equiv \sum_{w,c'} f_{w,c'}(d,c) = 1 = \frac{N(d)}{N(d)}$$

#### IIS cont.

■ When  $f^{\#}(d,c)=1$  for all c,d (as is the case in our model),  $\Delta \lambda_i$  can be calculated in closed form:

$$\Delta \lambda_i = \log \frac{\tilde{p}(f_i)}{p_{\lambda}(f_i)}$$

• However, in the general case we must use numerical methods to calculate  $\Delta λ_i$ .

19

## Toy IIS Example

- 2 classes ( $c_1$ =politics,  $c_2$ =art) :
  - $\blacksquare$  politics:  $d_1 = < the >$
  - art:  $d_2$ =<the Monet>,  $d_3$ =<the Monet Painting>
- empirical distribution:

$$\tilde{p}(d,c) = \begin{cases} \frac{1}{3} & \text{if } (d_1, c_1) \text{ or } (d_2, c_2) \text{ or } (d_3, c_2) \\ 0 & \text{otherwise} \end{cases}$$

# Example cont.

- Six features (3 words x 2 classes).
- $\blacksquare$  Empirical expected feature values  $\tilde{p}(f_{w,c'})$

|          | the                                 | Monet                               | Painting               |
|----------|-------------------------------------|-------------------------------------|------------------------|
| politics | 1*1/3=<br>1/3                       | 0                                   | 0                      |
| art      | 1/2*1/3+<br>1/3*1/3=<br><b>5/18</b> | 1/2*1/3+<br>1/3*1/3=<br><b>5/18</b> | 1/3*1/3=<br><b>1/9</b> |

21

# Results of IIS iterations

| Round 0: | $\lambda_{ m w,c'}$ |       | $p(f_{w,c'})$ |        |        |          |
|----------|---------------------|-------|---------------|--------|--------|----------|
|          | the                 | Monet | painting      | the    | Monet  | painting |
| politics | 0                   | 0     | 0             | 0.1666 | 0      | 0        |
| art      | 0                   | 0     | 0             | 0.1388 | 0.1388 | 0.0555   |

| Round 1: | $\lambda_{ m w,c'}$ |       |          |        | $p(f_{w,c'})$ |          |
|----------|---------------------|-------|----------|--------|---------------|----------|
|          | the                 | Monet | painting | the    | Monet         | painting |
| politics | 0.087               | 0     | 0        | 0.295  | 0             | 0        |
| art      | -0.062              | 0.726 | 0.601    | 0.3158 | 0.1615        | 0.066    |

| Round 2: | $\lambda_{\mathrm{w,c'}}$ |       |          | $p(f_{w,c'})$ |       |          |
|----------|---------------------------|-------|----------|---------------|-------|----------|
|          | the                       | Monet | painting | the           | Monet | painting |
| politics | 0.208                     | 0     | 0        | 0.2973        | 0     | 0        |
| art      | -0.147                    | 1.306 | 1.069    | 0.313         | 0.176 | 0.073    |

| Round 5: | $\lambda_{ m w,c'}$ |       | $p(f_{w,c'})$ |        | /     |          |
|----------|---------------------|-------|---------------|--------|-------|----------|
|          | the                 | Monet | painting      | the    | Monet | painting |
| politics | 0.506               | 0     | 0             | 0.3097 | 0     | 0        |
| art      | -0.368              | 2.58  | 2.04          | 0.3013 | 0.203 | 0.086    |

| Round 500: | $\lambda_{ m w,c}$ |       |          | $p(f_{w,c'})$ |       |          |
|------------|--------------------|-------|----------|---------------|-------|----------|
|            | the                | Monet | painting | the           | Monet | painting |
| politics   | 2.574              | 0     | 0        | 0.333         | 0     | 0        |
| art        | -2.56              | 14.73 | 8.45     | 0.278         | 0.276 | 0.1108   |

23

# Classification

At convergence, the weights  $\lambda_{w,c'}$  yield the following distribution for  $p(c \mid d)$ :

|          | <the></the> | <the<br>Monet&gt;</the<br> | <the monet="" painting=""></the> |
|----------|-------------|----------------------------|----------------------------------|
| politics | 0.99985     | 0.00021                    | 0.00005                          |
| art      | 0.00015     | 0.99979                    | 0.99995                          |

## Adding a Prior

- Maximum Entropy models can suffer from overfitting.
- With sparse data the observed feature statistics can be far from the true values.
- A N~(0, $\sigma^2$ ) prior probability for the weights  $\lambda_i$  is added to the model as a regularization term.
- With sparse data a small variance is used (so feature weights are forced towards 0).

25

# Experiments

- The performance was tested on 3 datasets.
- Both with and without the Gaussian prior.
- Results are compared to multinomial Naïve Bayes classifiers (both regular and scaled).

#### **Feature Selection**

- For each experiment, results with the optimal number of features are reported.
- Features are ranked and added according to mutual information with the class label:

$$I(c, w_i) = \sum_{j} \sum_{t=0,1,...} \tilde{p}(w_i = t, c_j) \log \frac{\tilde{p}(w_i = t, c_j)}{\tilde{p}(w_i = t) \cdot \tilde{p}(c_j)}$$

27

# Naïve Bayes Classifiers



- $ightharpoonup p(c_i)$ , and  $p(w_i | c_j)$  are estimated from the data.
- Classification according to Bayes' rule:

$$p(c_{j} \mid w_{1},...,w_{n}) = \frac{p(c_{j}) \prod_{i=1}^{n} p(w_{i} \mid c_{j})}{\sum_{j} p(c_{j}) \prod_{i=1}^{n} p(w_{i} \mid c_{j})}$$

## Naïve Bayes cont.

- The values w<sub>i</sub> are the word counts in the Naïve Bayes.
- In the scaled Naïve Bayes, all word counts are scaled so all documents have the same number of words.
- Naïve Bayes makes the assumption of independence between features.

29

#### **Data Sets**

| Name            | Samples | Classes | Vocabulary |
|-----------------|---------|---------|------------|
| WebKB           | 4199    | 4       | 23830      |
| Industry Sector | 6440    | 71      | 29964      |
| Newsgroup       | 20000   | 20      | 57040      |

■ For WebKB 30% is held out for testing, for Industry and Newsgroup 35% is held out (for these datasets the extra 5% is used as a validation set to terminate the training of the IIS).

# Error Rates on Holdout Sets

| Data Set   | NB               | Scaled           | Basic ME         | ME               |
|------------|------------------|------------------|------------------|------------------|
|            |                  | NB               |                  | w/prior          |
| WebKB      | 13.69<br>(2000)  | 13.10<br>(5000)  | 7.92<br>(2000)   | 8.08<br>(2000)   |
| Industry   | 28.97<br>(20000) | 20.21<br>(29964) | 21.14 (29964)    | 18.90<br>(29964) |
| Newsgroups | 16.15<br>(57040) | 14.43<br>(57040) | 15.77<br>(57040) | 15.14<br>(57040) |

The number of features used is in parentheses.







## **Concluding Remarks**

- Maximum Entropy is a method for learning distributions.
- The ME distribution is the most uniform one that complies with constraints determined from the training data, and makes no assumptions beyond them.
- The ME distribution is well defined and unique.
- It is the single maximum in a convex likelihood space, which makes it easy to find the optimal parameters.

35

#### More..

- The Maximum Entropy method has been shown to work well for text classification.
- In all cases it performed better than Naïve Bayes, and had mixed results comparable to scaled Naïve Bayes.
- Simple greedy feature selection was used; more sophisticated methods can be employed.

#### Remarks about Features

- This experiment used only simple single word features.
- The Maximum Entropy framework allows for complex context dependent features:
  - Word pairs "Buenos Aires"
  - Boolean formulas has "stock" but not "market"
- Maximum Entropy doesn't assume independence; it can accommodate overlapping and "redundant" features.

37

#### References

- Using Maximum Entropy for Text Classification Kamal Nigam, John Lafferty, Andrew McCallum. In IJCAI-99 Workshop on Machine Learning for Information Filtering, pages 61--67, 1999 (1999)
- A maximum entropy approach to natural language processing

Adam Berger, Stephen Della Pietra, and Vincent Della Pietra. *Computational Linguistics*, (22-1), March 1996