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The Essence of Maximum Entropy

m Maximum Entropy is a technique for learning
probability distributions from data.

m “Don't assume anything about yout probability
distribution other than what you have observed.”

m Always choose the most uniform distribution
subject to the observed constraints.

Simple Classification Example

m An expert can classify documents into 4 classes:
economics, sports, politics, art.

m The training data is a set of documents; each
document is represented by a vector of words.

m We want to construct a probability distribution
that represents the documents.




First Model

B Fach document must be classified into one of

the classes, so :
P(economics) + P(sports ) + P(politics ) + P(art) =1

m Without additional information, choose the
model that makes the least assumptions.

P(economics)=P(sports )=P(politics ) = P(art) = 0.25

m [east assumptions = Most Uniform.

Example Cont.

m Suppose that if the word “ball” appears in the
text, then p(sports | ball) = 0.7 .
m How do we adjust the distribution?
m p(sports | ball) =0.7
politics | ball)=0.1

m P(
m P(economics | ball)=0.1
m P(art | ball )=0.1




What about More Observations?

m How do we factor in additional constraints?
P(politics | Bush) =0.8, P(spotts | game ) =0.0,
P(economic | stock)=0.5, ...

m Maximum Entropy modeling lets us create a
distribution that abides by all these constraints,
while being as uniform as possible.

Why Try to be Uniform?

Most uniform = Maximum Entropy.

By making the distribution as uniform as possible, we
don’t make any additional assumptions to what is
suppotted by the data.

Matches intuition of how probability distributions
should be estimated from data.

Abides by the principle of Occam’s Razor (least
assumptions made = simplest explanation).




Maximum Entropy Modeling for
Text Classification

m Our training data is N paits {(d;,¢;),..,(dxCpo) }
m ce C classes of documents.

m d,eD — Set of documents. Each document is represented as
a vector of word counts.

m The training set is renamed the “empirical” distribution
- 1 g
p(d,c)= NX the number of times (d,c) appears
pd,c)
p(d)

m We want to create a stochastic model for p(cld) =

Feature Functions

m Features are used to capture relevant aspects of
the training data.

m For example, a binary feature describing the
appearance of the word ball in a sports
document:

1 if c=sports and 'ball'appearsin d

fsprots.bal[ (d’ C) = {

0 otherwise




Feature Functions cont.

m In this paper scaled real valued features are used:

0] ifc#c

\fw,c' (d7 C) = { N(d,w)

v, Otherwise

m Gives better results than binary features.

Statistics

m The expected values of a feature with respect to
the empirical distribution is

p(f)=> pd,0)- f(d,c)

d,c

m Likewise, the expected value of a feature with

respect to our model p 1s

p(f)=) pd)p(cld)- f(d,c)

d,c




Constraints

m Important statistics are used to shape the model,
by forcing the model to comply with them:

p(f)=p(f)

m This means that the following should hold for
every feature f.

> p@plcld)-f(d,c)=). p(d,c)- f(d,c)

d,c d,c

Selecting a Model

m There can be an infinite number of models that
satisfy a set of constraints.

m The maximum entropy principle dictates we
select the most uniform model that satisfies the
constraints.

m Uniformity is measured in terms of the
conditional entropy of p(c|d):

H(p)=-)_ p(d)p(cld)log p(cld)




The Maximum Entropy Model

® [rom the set of allowed probability distributions, we
select the model p* that maximizes H(p).

m p* can always be expressed in an exponential form:

1
pcld)= 70 exp(Z A f,.(d,c)j

m A, - weight parameters to be estimated

m 7Z(d) — normalizing constant:

Z(d)= Zexp[z A f,.(d,c)]

Properties of p*

m When p* is selected from the exponential family of
distributions, we are guaranteed that:
® p* is always well-defined, and unique.

® p* also maximizes the conditional log likelihood of the data:

L;(p)=Y, p(d.c)log p(cld)

d,c

® The likelihood space for the parameters of p 1s convex with
one global maximum (unlike the typical likelthood surface
for EM).




Improved Iterative Scaling

1. Start with A, =0 for all i€ {1,2,....n}
2. Do for each i€ {1,2,...n}
o Let A\, be the solution to

d,c

Y bd)pcld)f, (d,C)J exp(ALf'(d,c) =p(f)

'

‘/Where f#(d,C)EZﬁ(d,c)

A = A+ AL

Go to Step 2 if not all A, have converged

Feature Functions: Reminder

m In this paper scaled real valued features are used:

0 if c#c'

ﬁt’,(" (d’ C) = { N(d,w)

T Otherwise

m Has the useful property that

f#(d’c) = Z‘fw,("(d’c) — 1 = %

w,c'




I1S cont.

m When f#(d,c)=7 for all c,d (as is the case in our
model), AA, can be calculated in closed form:

Ak =log LU
pi(f)

m However, in the general case we must use
numerical methods to calculate A, .

Toy IIS Example

m 2 classes (c,=politics, c,=art) :
m politics: d;=<the>
W art: d,=<the Monet>,
d;=<the Monet Painting>

m empirical distribution:

1+ if (d,,c,)or(d,,c,)or(d;,c,)

0 otherwise

ﬁ(d,6)={
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Example cont.

m Six features (3 words x 2 classes).

m Empirical expected feature values p(f,..)

ar AL

1/2%1/3+ 1/2%1/3+ 1/3*1/3=
1/3*1/3= 1/3*1/3=

5/18 5/18 1/9

Results of IIS iterations
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Classification

m At convergence, the weights A, . yield the
tollowing distribution for p(c|d):

<the> <the <the Monet
Monet> painting>
0.99985  |0.00021 0.00005
art 0.00015 0.99979 0.99995
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Adding a Prior

m Maximum Entropy models can suffer from
overfitting.

m With sparse data the observed feature statistics
can be far from the true values.

m A N~(0,0%) ptiot probability for the weights A,
1s added to the model as a regularization term.

m With sparse data a small variance 1s used (so
teature weights are forced towards 0).

Experiments

m The performance was tested on 3 datasets.
m Both with and without the Gaussian prior.

m Results are compared to multinomial Naive
Bayes classifiers (both regular and scaled).
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Feature Selection

m For each experiment, results with the optimal
number of features are reported.

m Features are ranked and added according to
mutual information with the class label:

p(w. =t,c.
I(c,vvi)zz Zﬁ(wizr,cj)log Pv i

7 1=01,. p(w; =1)-p(c;)

Naive Bayes Classifiers

(e
PPN

m p(c), and p(w; | ¢) are estimated from the data.

m Classification according to Bayes’ rule:

p(C_/.)H pw,lc;)
i=1

Z p(cj)Ii[ p(w;lc;)
J i=1

plc;Iw,..,w,)=

b
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Naive Bayes cont.

m The values w, are the word counts in the Naive
Bayes.

m In the scaled Naive Bayes, all word counts are
scaled so all documents have the same number
of words.

m Naive Bayes makes the assumption of
independence between features.

Data Sets

Name Vocabulary

WebKB 4199 >

Industry Sector | 6440 29964
Newsgroup 20000 57040

m For WebKB 30% is held out for testing, for Industry
and Newsgroup 35% is held out (for these datasets the
extra 5% 1s used as a validation set to terminate the
training of the IIS).




Error Rates on Holdout Sets

WebKB 13.69 | 13.10 7.92 8.08
(2000) | (5000) ) )

Industry 28.97 | 20.21 21.14 18.90
(20000) | (29964) | (29964) | (29964)

Newsgroups | 16.15 | 14.43 15.77 15.14
(57040) | (57040) (57040) (57040)

The number of features used is in parentheses.

Industry Data

Maximum Entropy with Prior —=—
Basic Maximum Entropy

ot

.
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Classification Accuracy

10 12
IIS lterations

® The performance of ME without a prior detetiorates
with increases IIS round due to overfitting.
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WebKB data
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Maximum Entropy with Prior —=—— 4
Basic Maximum Entropy -+

Classification Accuracy

15 20 25
IS Iterations

= No overfitting by the IIS with the WebKB data.

Importance of Feature Selection

Maximum Entropy —=—
Scaled Naive Bayes -+
Regular Naive Bayes =

Classification Error

1000 10000 100000
Vocabulary Size

® The maximum Entropy classifier without a prior is
mote prone to overfitting than Naive Bayes.




Concluding Remarks

Maximum Entropy is a method for learning
distributions.

The ME distribution is the most uniform one that
complies with constraints determined from the training
data, and makes no assumptions beyond them.

The ME distribution is well defined and unique.

It is the single maximum in a convex likelthood space,
which makes it easy to find the optimal parameters.

More..

The Maximum Entropy method has been shown
to work well for text classification.

In all cases it performed better than Naitve
Bayes, and had mixed results comparable to
scaled Naive Bayes.

Simple greedy feature selection was used; more
sophisticated methods can be employed.
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Remarks about Features

m This experiment used only simple single word
teatures.

m The Maximum Entropy framework allows for
complex context dependent features:

m Word pairs “Buenos Aires”

2>

® Boolean formulas — has “stock’ but not “market

m Maximum Entropy doesn’t assume
independence; it can accommodate ovetlapping
and “redundant” features.
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