Evaluating Classifiers

Charles Elkan
elkan@cs.ucsd.edu

January 20, 2012

1 Test sets and validation sets

In a real-world application of supervised learning, we have a training set of exam-
ples with labels, and a test set of examples with unknown labels. The whole point
is to make predictions for the test examples.

However, in research or experimentation we want to measure the performance
achieved by a learning algorithm. To do this we use a test set consisting of exam-
ples with known labels. We train the classifier on the training set, apply it to the
test set, and then measure performance by comparing the predicted labels with the
true labels (which were not available to the training algorithm).

Sometimes we have a training set and a test set given already. Other times, we
just have one database of labeled training examples. In this case, we have to divide
the database ourselves into separate training and test subsets. A common rule of
thumb is to use 70% of the database for training and 30% for testing. Dividing
the database into training and test subsets is usually done randomly, in order to
guarantee that both subsets are random samples from the same distribution. It can
be reasonable to do stratified sampling, which means to ensure that each class is
present in the exact same proportion in the training and test subsets.

It is absolutely vital to measure the performance of a classifier on an inde-
pendent test set. Every training algorithm looks for patterns in the training data,
1.e. correlations between the features and the class. Some of the patterns discov-
ered may be spurious, i.e. they are valid in the training data due to randomness in
how the training data was selected from the population, but they are not valid, or
not as strong, in the whole population. A classifier that relies on these spurious
patterns will have higher accuracy on the training examples than it will on the

whole population. Only accuracy measured on an independent test set is a fair
estimate of accuracy on the whole population. The phenomenon of relying on
patterns that are strong only in the training data is called overfitting. In practice it
1s an omnipresent danger.

Most training algorithms have some settings for which the user can choose
values. For k nearest neighbor classification, an important setting is the integer
k, for example. When training a naive Bayes classifier, the settings include the
degree of smoothing A\ and the number of bins to use when discretizing continuous
features, and possibly more. For a learning algorithm that uses regularization, the
strength of regularization is an important setting It is natural to run a training
algorithm multiple times, and to measure the accuracy of each classifier obtained
with different settings. Then, it is natural to pick the settings that give highest
performance on the validation set. Note that the measure of performance used on
the validation set, for example 0/1 accuracy, may be different from the measure
that is optimized on the training set, for example log conditional likelihood. A set
of labeled examples used in this way to pick settings for an algorithm is called a
validation set.

If one uses a validation set, it is important to have a final test set that is in-
dependent of both the training set and the validation set. The settings that give
the best performance on the validation set are likely to be overfitting the valida-
tion set. This effect may be large if many different settings are evaluated. Only
an independent test set can give a fair estimate of the performance of the chosen
settings.

2 Measures of classification success

When evaluating a classifier, there are different ways of measuring its perfor-
mance. For supervised learning with two possible classes, all measures of perfor-
mance are based on four numbers obtained from applying the classifier to the test
set. These numbers are called true positives ¢p, false positives fp, true negatives
tn, and false negatives fn. They are counts that are entries in a 2x2 table as
follows:

predicted
positive | negative |
positive ‘ tp ‘ fn ‘
truth
negative | fp | in |

A table like the one above is called a confusion matrix. The terminology true
positive, etc., is standard, but whether columns correspond to predicted and rows
to actual, or vice versa, is not standard.

The entries in a confusion matrix are counts, i.e. integers. The total of the four
entries tp + tn + fp + fn = n, the number of test examples. Depending on the
application, many different summary statistics are computed from these entries.
In particular:

e accuracy a = (tp +tn)/n,
e precision p = tp/(tp + fp), and
e recall r = tp/(tp + fn).

Assuming that n is known, three of the counts in a confusion matrix can vary
independently. Hence, no single number, and no pair of numbers, can characterize
completely the performance of a classifier. When writing a report, it is best to
give the full confusion matrix explicitly, so that readers can calculate whatever
performance measurements they are most interested in.

3 Classification with a rare class

In many domains one class of examples is much more common than the other
class. For example, maybe only 1% of patients actually have a certain rare disease,
and nowadays only 10% of email messages are actually not spam. The base rate
accuracy is the accuracy obtained by predicting that every example has whatever
label is most common in the training set. With 99% of examples in one class, it is
trivial to achieve 99% accuracy and it can be very difficult to achieve any higher
accuracy.

However, for many applications of supervised learning, a classifier can be very
useful even if its overall accuracy is less than the base rate. Consider for example
a scenario with 97% negative examples, and the following confusion matrix:

tp=151| fn=15
fp=25|tn =945

This classifier has accuracy ¢ = 960/1000 = 96% which is less than the base
rate 97%. But, it has precision p = 15/(15 + 25) = 37.5% and recall r =
15/(15+ 15) = 50%. These levels of precision and recall are non-trivial and may
be very useful in the application domain.

3

A common way that a classifier is used is to produce a list of candidate test
examples for further investigation. For example, a search engine may produce a
fixed number of web pages that a classifier predicts are most likely to be relevant
to a query. The confusion matrix above means that if the classifier provides a
list of 40 candidates, 37.5% of them are genuinely positive and 50% of genuine
positives do appear on the list. In contrast, randomly choosing 40 candidates from
1000 would yield only 3% of positives on average, and 97% of actual positives
would be missed.

4 Cross-validation

Often we have a fixed database of labeled examples available, and we are faced
with a dilemma: we would like to use all the examples for training, but we would
also like to use many examples as an independent test set. Cross-validation is a
procedure for overcoming this dilemma. It is the following algorithm.

Input: Training set .S, integer constant %
Procedure:
partition .S into £ disjoint equal-sized subsets Sy, ..., Sk
forr=1toi =k
letT =S5 \ Sl
run learning algorithm with 7" as training set
test the resulting classifier on S; obtaining tp;, fp;, tn;, fn;
compute tp = 32 tp;, fp = 32 fpis tn = 2 tng, fno= 3 fn;

The output of cross-validation is a confusion matrix based on using each labeled
example as a test example exactly once. Whenever an example is used for testing a
classifier, it has not been used for training that classifier. Hence, the confusion ma-
trix obtained by cross-validation is intuitively a fair indicator of the performance
of the learning algorithm on independent test examples.

If n labeled examples are available, the largest possible number of folds is k =
n. This special case is called leave-one-out cross-validation (LOOCYV). However,
the time complexity of cross-validation is & times that of running the training
algorithm once, so often LOOCYV is computationally infeasible. In recent research
the most common choice for £ is 10.

Note that cross-validation does not produce any single final classifier, and the
confusion matrix it provides is not the performance of any specific single classi-
fier. Instead, this matrix is an estimate of the average performance of a classifier

4

learned from a training set of size (k — 1)n/k where n is the size of S. The com-
mon procedure is to create a final classifier by training on all of S, and then to
use the confusion matrix obtained from cross-validation as an informal estimate
of the performance of this classifier. This estimate is likely to be conservative in
the sense that the final classifier may have slightly better performance since it is
based on a slightly larger training set.

The results of cross-validation can be misleading. For example, if each exam-
ple is duplicated in the training set and we use a nearest-neighbor classifier, then
LOOCYV will show a zero error rate. Cross-validation with other values of k£ will
also yield misleadingly low error estimates. For a detailed discussion of additional
pitfalls to avoid in connection with cross-validation, see [Forman and Scholz, 2010].

5 Systematic choice of algorithm parameters

Consider a supervised learning algorithm with one or more settable parameters.
How should we choose values for these? Usually, we define a finite set of al-
ternative values for each parameter. Then, the simplest approach is to run the
algorithm with the same training data for each combination of parameter values.
We measure performance each time on the same validation set [Hsu et al., 2010].

This simple approach likely overfits the validation set. The parameter settings
that give highest accuracy (for any definition of accuracy) on the validation set are
likely not the settings that perform best on future test data. To get a fair estimate
of future accuracy, we need to test the single classifier with the chosen parameter
settings on a completely independent test set.

To combine the approach above with cross-validation, one option is nested
cross-validation. A drawback of nested cross-validation is its computational cost.
If the inner and outer cross-validation both use ten folds, then the number of times
a classifier must be trained is ?.

Trying every combination of parameter settings is called grid search. Finding
the best settings is an optimization task. Grid search is the most naive possible
optimization method. More efficient optimization algorithms typically use gradi-
ents (multidimensional derivatives), but these are typically not useful for selecting
parameter settings for two reasons. First, the accuracy achieved by an algorithm
is not a continuous function of many settings, in particular discrete settings such
as k in KNN. Second, often there are alternative combinations of settings each of
which is a local optimum.

For the reasons just explained, grid search is still used almost always in prac-

tice. However, better alternatives may exist. In particular, combinatorial search
methods that sample alternative sets of settings, and then sample new sets based
on recombining the best sets found so far, are promising. So-called genetic algo-
rithms are search methods of this type, but not the only ones. A method called the
Nelder-Mead algorithm (see Wikipedia), which is available in Matlab under the
name fminsearch can be useful for finding algorithm settings much faster than
with grid search.

6 Leakage

Leakage 1s the situation where one inadvertently uses information to train a clas-
sifier, or to make predictions, that is correlated illegitimately with the target being
predicted. The correlation may be illegitimate, or the use of the information may
be illegitimate, or both. There are many sources of leakage, some quite subtle.

A first type of leakage is from human background knowledge. It happens often
that a particular dataset is studied intensively by many researchers, who use it as
an example in many papers. When this happens, researchers will learn collectively
what tends to give high performance on this dataset, for example L, as opposed
to Lo regularization. Then, a later researcher who uses L; regularization will be
the victim (or perpetrator) of leakage.

6.1 Contests versus real-world projects

To discuss other types of leakage, first consider the differences between a data
mining contest and a real-world project. For brevity, we will call these just a
contest and a project. In a project, the trained classifier is applied to examples
for which the true label is genuinely unknown—if the true label were known, there
would be no need to apply any predictive method. In a contest, the classifier is
applied to examples for which the true label is known, because the point is to
study the performance of the classifier. Class assignments and research papers are
similar to contests in this crucial way, so what we say here about contests applies
to them also.

It is relatively easy for leakage to occur in contests, because the labels of test
examples are known, but it is illegitimate to use them, or anything computed from
them. In principle it is impossible for leakage to occur in real-world projects,
because the labels of test examples are unknown. Indeed, if the label of a test
example were known in a real-world project, the right thing to do would be to

use that label, because the goal is to make the best possible decisions. Essentially,
everything is fair in a real-world project, but a contest has implicit or explicit rules
of the game, and leakage breaks these rules.

In supervised learning we talk about learning a classifier. However, depending
on the context, we make talk about learning to predict or recognize or detect or
identify or classify or diagnose. From an algorithmic perspective, all these tasks
are similar. However, from an applications perspective, they are very different.
Prediction is about the future, and typically it is legitimate to use all information
that is available now. However, diagnosis is about uncovering something that is
already true or false, but which is hidden. For diagnosis, even in a real-world
project there are rules of the game about what information can be used. For ex-
ample, a classifier for cancer diagnosis may be allowed to use x-rays and other
imaging data, but not biopsy data. In this case the biopsy data may be viewed as
the ground truth, the target, and the goal of a predictive model is to approximate
the truth based on less expensive features. Suppose that a pathologist is consulted
if and only if a biopsy is cancerous. Then, the number of pathologists consulted
will be a leaker feature.

Even if a real-world project involves diagnosis and not prediction, usually
there is a defined time point for each test example such that all features observed
before that time are legitimate inputs for that classifier. After all, even if a feature
was expensive to measure, after it has been measured there is no reason not to use
it. Therefore, leakage is typically easy to detect in real-world projects: it shows
up as low performance on test examples. Leaker features that may inadvertently
have been used as part of training examples have values that are missing for test
examples.

6.2 Leakage between examples

An important insight is that leakage can be due not just to using illegitimate fea-
tures, but also to using illegitimate training examples. This happens when test and
training examples are not independent. As an extreme case, suppose that there are
two copies of every example in a dataset. Now suppose that the classifier is k-
nearest neighbor with £ = 1 and the evaluation method is n-fold cross-validation.
The observed error rate will be zero, because of leakage from training to test ex-
amples.

An important situation where leakage can occur between examples is when
the examples are correlated because they are part of a network. Suppose that the
goal is to predict labels for members of Facebook. The available data may be

7

all members in a certain group, for example all UCSD students. If this group is
divided randomly into a training set and a test set, then each member of the test
set will be linked to some training set members, and information can flow.

Any particular flow of information is legitimate or not depending on the ulti-
mate goal. If the goal is to predict labels for a few students, given the labels of
other students, then the UCSD information flow just described can be legitimate.
But if the goal is to predict labels for all students at a new campus, then the same
information flow is leakage.

6.3 Leakage due to how the dataset is created

A common cause of leakage is the dataset creation procedure. Suppose that the
goal is to diagnose a certain disease, and the available data come from two hospi-
tals. If the disease is more common at one of these hospitals, then the hospital id
will be a significant predictor. This feature is a leaker if real test patients will all
come from different hospitals. Now suppose that the hospital id is removed from
the dataset, but each patient is assigned a personal id number, and patients from
the two hospitals have different id number ranges. The id number will then be a
leaker feature. Note that this scenario is common in practice, because id numbers
are rarely assigned completely at random. For example, in the United States social
security numbers contain information about age and geography.

A second way in which the dataset creation procedure can cause leakage is
as follows. Suppose that patients have yes/no codes for multiple symptoms and
diseases. Now, suppose that the target is one of these diseases. Naturally the
target feature is not a legitimate input to a classifier, so this feature is removed
from training and test examples. However, having the code “no” for every other
disease is then a strong predictor for having the target disease.

7 Making optimal decisions

In any application of machine learning, there are many metrics of performance
that can be measured on test data. Examples include log likelihood, mean squared
error, 0/1 accuracy, area under the ROC curve, and more. The ultimate quantity to
measure and optimize has to be domain-dependent and application-specific. For
many tasks, this ultimate quantity is monetary benefit.

Decision theory provides methods for defining and maximizing expected ben-
efit, where expected benefit is the product of the probability of an outcome and

the benefit if that outcome occurs. In general, benefit is revenue minus expense.
The assignment description below provides an example of a decision-theoretic
analysis.

8 Evaluating probabilistic classifiers

Definition of base rate.

Meaning of predicted conditional probabilities.

Meaning of well-calibrated.

Overlapping distributions of conditional probabilities.

Measuring the accuracy of conditional probabilities: mean squared error.

Overfitting: deteriorating performance on test data combined with improv-
ing performance on training data.

Training to maximize one objective versus measuring another: log likeli-
hood versus mean squared error.

References

[Forman and Scholz, 2010] Forman, G. and Scholz, M. (2010). Apples to ap-
ples in cross-validation studies: Pitfalls in classifier performance measurement.
ACM SIGKDD Explorations, 12(1):49-57.

[Hsu et al., 2010] Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2010). A practi-
cal guide to support vector classification. Available at http://www.csie.
ntu.edu.tw/~cjlin/.

CSE 250B Quiz 5, February 4, 2010

Write your name:

For each statement below, clearly write “True” if it is mostly true, or “False” if
it is mostly false. Then write one or two sentences explaining why or how the
statement is true or false.

Both statements below are based on the same scenario, which is inspired by the
second project assignment. You are training logistic regression classifiers without
regularization. The classifier to predict p(visit = 1|z) is trained on n; examples,
while the classifier to predict p(buy = 1|x,visit = 1) is trained on ny < ny
examples. You have a small number d < n, of informative features.

1. [2 points] The classifier to predict p(visit = 1|x) is likely to show worse
overfitting than the classifier to predict p(buy = 1|z, visit = 1).

2. [2 points] If you had twice as many informative features, both classifiers
would be more likely to overfit.

CSE 250B Quiz, January 20, 2011

Write your name:

In the ISMIS 2011 data mining contest, the goal is to recognize the genre (clas-
sical, jazz, pop, etc.) of musical recordings. Each example in the training set
is a feature vector describing one segment of one recording by one artist. There
are many segments from each recording, and many recordings from each artist.
The segments from each artist are assigned together, at random, either to the
training set or to the test set. (Further details are at http://tunedit.org/
challenge/music-retrieval/genres but are not relevant to this quiz
question.)

Explain why cross-validation on the training set will not give a fair estimate
of accuracy on the test set. Will the estimated accuracy from cross-validation be
too good or too bad?

