
Nearest Neighbor Classification

Charles Elkan
elkan@cs.ucsd.edu

January 8, 2010

The nearest-neighbor method is perhaps the simplest of all algorithms for pre-
dicting the class of a test example. The training phase is trivial: simply store
every training example, with its label. To make a prediction for a test example,
first compute its distance to every training example. Then, keep the k closest
training examples, where k ≥ 1 is a fixed integer. Look for the label that is most
common among these examples. This label is the prediction for this test example.

This basic method is called the kNN algorithm. There are two design choices
to make: the value of k, and the distance function to use. When there are two
alternative classes, the most common choice for k is a small odd integer, for ex-
ample k = 3. When each example is a fixed-length vector of real numbers, the
most common distance function is Euclidean distance:

d(x, y) = ||x− y|| =
√

(x− y) · (x− y) = (
m∑

i=1

(xi − yi)
2)1/2

where x and y are points in Rm.
An obvious disadvantage of the kNN method is the time complexity of making

predictions. Suppose that there are n training examples in Rm. Then applying
the method to one test example requires O(nm) time, compared to just O(m)
time to apply a linear classifier such as a perceptron. If the training data are
stored in a sophisticated data structure, for example a kd-tree, then finding nearest
neighbors can be done much faster if the dimensionality m is small. However, for
dimensionality m ≥ 20 about, no data structure is known that is useful in practice
[Kibriya and Frank, 2007].

If the distance function satisfies the triangle inequality, then this inequality can
be used to reduce the number of distance calculations needed. The fundamental
fact that is useful is the following.

1

Lemma: Suppose d(·, ·) is a distance metric that satisfies the triangle inequality,
so d(x, z) ≤ d(x, y)+d(y, z) for all x, y, and z. Then for all u, v, andw d(u,w) ≥
|d(u, v)− d(v, w)|.
Proof: Note that d(x, z) − d(y, z) ≤ d(x, y) and similarly, d(y, z) − d(x, z) ≤
d(x, y). Hence |d(x, z)− d(y, z)| ≤ d(x, y).

The LAESA algorithm applies the lemma above as follows. Given a training
set T and a test point x, the algorithm returns the nearest neighbor y in T of x.
The algorithm uses a fixed set of basis points B whose distances to every point in
T are computed in advance. For any test point x:

compute d(b, x) for all b ∈ B
for all t ∈ T

compute lower bound g(t, x) = maxb |d(t, b)− d(b, x)|
// invariant: d(t, x) ≥ g(t, x) for t ∈ T
initialize y = argminb d(b, x)
for all r in T sorted by increasing g(r, x)

if g(r, x) ≥ d(y, x) then return y and finish
else compute d(r, x)

if d(r, x) < d(y, x) then set y = r

Distances are computed just once between all training points and all points in the
basis set B, in a preprocessing stage. The cost of this preprocessing is amortized
over many test points x. The algorithm avoids computing distances by doing
bookkeeping calculations involving lower bounds that are scalars. The relative
computational benefit is larger when distance calculations are more expensive.
This is true for Euclidean distance in high dimensions, and for distance functions
that are not Euclidean but satisfy the triangle inequality, such as edit distance
between strings. For Euclidean distance in low dimensions, there may be little
benefit.

A major advantage of the kNN method is that it can be used to predict labels
of any type. Suppose training and test examples belong to some set X , and labels
belong to some set Y . Formally, a classifier is a function X → Y . Supervised
learning problems are categorized as follows.

• The simplest case is |Y | = 2; this is a binary classification problem. The
standard perceptron is only useful for this type of problem.

• If Y is finite and discrete, with |Y | ≥ 3, this is a multiclass classification
problem.

2

• If Y = R we have a regression task.

• If Y = Rq with q ≥ 1 we have a multidimensional regression task.

• If Y is a powerset, that is Y = 2Z for some finite discrete set Z, we have
a multilabel problem. For example Y might be the set of all newspaper
articles and Z might be the set of labels {SPORTS, POLITICS, BUSINESS,
. . . }.

• If X = A∗ and Y = B∗ where A and B are sets of symbols, then we
have a sequence labeling problem. For example, A∗ might be the set of
all English sentences, and B∗ might be the set of part-of-speech sequences
such as NOUN VERB ADJECTIVE.

Tasks such as the last two above are called structured prediction problems. The
word “structured” refers to the fact that there are internal patterns in each output
label. For example, suppose that x is a sentence of length 2. The part-of-speech
labels y = NOUN VERB and y = VERB NOUN both have high probability, while
the labels y = NOUN NOUN and y = VERB VERB do not. One major theme of
recent research in machine learning has been to develop methods that can learn
and use structure in output labels.

The nearest neighbor method is the only algorithm that is directly usable for
all the types of problem listed above. Of course, we still need a useful distance
function d : X ×X → R, which may not be obvious to design for some sets X .
Note that a kNN method with k ≥ 2 requires some sort of averaging or voting
function for combining the labels of multiple training examples.

The nearest-neighbor method suffers severely from what is called the “curse of
dimensionality.” This curse has multiple aspects. Computationally, as mentioned
above, if d ≥ 20 the method is very slow. More subtly, the accuracy of the method
tends to deteriorate as d increases. The reason is that in a high-dimensional space
all points tend to be far away from each other, so nearest neighbors are not mean-
ingfully similar. Practically, if examples are represented using many features, then
every pair of examples will likely disagree on many features, so it will be rather
arbitrary which examples are closest to each other.

In many domains, data are represented as points in a high-dimensional space,
but for domain-specific reasons almost all points are located close to a subspace
of low dimensionality. In this case the “effective dimensionality” of the data is
said to be small, and nearest-neighbor methods may work well.

3

A useful way to judge the impact of the curse of dimensionality is to plot the
distribution of interpair distances in the training set. If n is large it is enough to
take a random sample of all n(n− 1)/2 pairs. It is desirable for the distribution to
have large spread compared to its mean. If it does, then the effective dimension-
ality of the data is small.

For examples that are real-valued vectors using a p-norm distance with p <
2 instead of Euclidean distance can be beneficial [Aggarwal et al., 2001]. This
distance function is

dp(x, y) = ||x− y||p = (
∑

i

|xi − yi|p)1/p.

Note that the definition includes taking the absolute value of xi−yi before raising
it to the power p. The case p = 1 is called Manhattan distance: d1(x, y) =∑

i |xi − yi|. The case p = 0 is called Hamming distance: d0(x, y) =
∑

i I(xi 6=
yi) where I(α) is an indicator function: I(α) = 1 if α is true and I(α) = 0
otherwise.

The nearest-neighbor method has an important theoretical property. First we
need a definition. The Bayes error rate for a classification problem is the minimum
achievable error rate, i.e. the error rate of the best possible classifier. This error
rate will be nonzero if the classes overlap. For example, suppose that x ∈ R and
x given y follows a Gaussian distribution with mean µy and fixed variance. The
two Gaussians overlap so no classifier can predict y correctly for all x, and the
Bayes error rate is nonzero. (Notice that the Bayes error rate has no connection
with Bayes’ rule.)

The Bayes error rate is the average over the space of all examples of the mini-
mum error probability for each example. The optimal prediction for any example
x is the label that has highest probability given x. The error probability for this
example is then one minus the probability of this label. Formally, the Bayes error
rate is

E∗ =

∫
x

p(x)[1−max
i
p(i|x)]

where the maximum is over the m possible labels i = 1 to i = m.
The theoretical property of the 1NN method is that in the limit where the num-

ber of training examples tends to infinity, the error rate of a 1NN classifier is at
worst twice the Bayes error rate. This result was proved by Cover and Hart in
1967. For a sketch of the proof see [Ripley, 1996, page 192].

4

Theorem: For sufficiently large training set size n, the error rate of the 1NN clas-
sifier is less than twice the Bayes error rate.
Proof: The critical fact is that if the number n of training examples is large
enough, then the label probability distributions for any point and its nearest neigh-
bor will be essentially the same. In this case, for any point x, the expected error
rate of the 1NN classifier is

m∑
i=1

p(i|x)[1− p(i|x)].

To prove the theorem we need to show that

m∑
i=1

p(i|x)[1− p(i|x)] ≤ 2[1−max
i
p(i|x)].

Let maxi p(i|x) = r and let this maximum be attained with i = j. Then the
lefthand side is

r(1− r) +
∑
i 6=j

p(i|x)[1− p(i|x)]

and the righthand side is 2(1 − r). The summation above is maximized when all
values p(i|x) are equal for i 6= j. The value of the lefthand side is then

A = r(1− r) + (m− 1)
1− r
m− 1

m− 1− (1− r)
m− 1

= r(1− r) + (1− r)m+ r − 2

m− 1
.

Now r ≤ 1 and m− 2 + r < m− 1 so A < 2(1− r) which is what we wanted to
prove.

An alternative version of this result is the statement E∗ ≥ E/2. This says that
with a large enough training set, no classifier can do better than half the error rate
of a 1NN classifier. Conversely, we can obtain an estimated lower bound for the
Bayes error rate by measuring the error rate of a 1NN classifier, then dividing by
two.

Can a nearest-neighbor method actually come close to the Bayes error rate?
The answer is yes. If k →∞while k/n→ 0 then the error rate of kNN converges
to the Bayes error rate as n→∞. The result is strongest with k/ log n→∞ also
[Devroye et al., 1994]. Note that because these results are for n→∞ they do not
say which k is best for any particular finite n.

5

The three results above are true regardless of which distance metric is used. If
the sample size is large enough, then any distance metric is adequate. Of course,
for reasonable finite sample sizes, different distance metrics typically give very
different error rates.

6

CSE 250B Quiz for Thursday January 7, 2010

Your name:
While taking this quiz you may use only your own handwritten notes, and printed
copies of CSE 250B lecture notes.

The LAESA algorithm is as follows, given a test point x:

compute d(b, x) for all b ∈ B
for all t ∈ T

compute lower bound g(t, x) = maxb |d(t, b)− d(b, x)|
initialize y = argminb d(b, x)
for all r in T sorted by increasing g(r, x)

if g(r, x) ≥ d(y, x) then return y and finish
else compute d(r, x)

if d(r, x) < d(y, x) then set y = r

The algorithm uses a fixed set of basis pointsB. Distances are computed just once
between all training points and all points in the set B, in a preprocessing stage.
We did not specify in class how to choose the points in B.

Question [4 points]: Is it better to select points in B that are (a) far from each
other, or (b) close to each other? Justify your answer in one or two sentences.

Grading guide: Scores are integers between 0 and 4. Assuming that the
answer is correct, namely (a), the score starts at 4 points. Points can be lost for
the following reasons. This list is more or less in order of importance from most
serious to least serious: statements that are incorrect, no good justification given,
reasons that are valid but less important than other reasons that are not stated,
statements that are true but not relevant, sentences that are so complicated they are
hard to understand, and errors in English that make writing hard to understand.

7

Assignment 1
This assignment is due at the start of class on Thursday January 21. You should work in a
group of three students for this project. (If enrollment declines, then we will have groups
of two for later projects.)

The goal of this project is to learn to recognize handwritten digits. Specifically, you
will train nearest-neighbor and perceptron classifiers. The input to each classifier is a 16
by 16 array of pixels. The output of the classifier is one of the ten digits from 0 and 9.
There are 7291 examples to be used for training, and 2007 examples for testing. Each
pixel is a gray-scale intensity between -1 and +1. Note that although each digit is a two-
dimensional array, for the project you should treat it as a one-dimensional vector of length
162 = 256.

This dataset is called the USPS dataset, and results on it have been published in many
papers. However, it is always important to check whether different papers use the exact
same version of a dataset. It happens often that different papers use the same name for al-
ternative versions of a dataset. The data are available at http://www-stat-class.
stanford.edu/˜tibs/ElemStatLearn/data.html. Do read the info file care-
fully to understand this particular version of the data.

Your task is to compare two supervised learning methods that are fundamentally dif-
ferent. Specifically, you must use Matlab or R to implement and do experiments with (i)
the standard perceptron algorithm and (ii) k nearest-neighbor classification. For (i), you
must first implement and test the two-class perceptron algorithm. Then, you must design
and implement a multiclass classification strategy that uses two-class perceptrons as sub-
routines. Make sure your multiclass strategy is simple, sensible, and efficient. For (ii),
you should use Euclidean distance, and select how many nearest neighbors k to use in a
sensible way. You should concentrate on implementing and using the basic perceptron
and nearest-neighbor methods correctly and efficiently; do not modify the basic methods.
Be sure to design and describe clearly sensible tie-breaking heuristics. Also, design a
simple sensible heuristic for terminating perceptron training.

You should do experiments with the multiclass task of distinguishing all ten digits.
You must think rigorously about designing experiments that are conceptually sound. For
final accuracy measurements, use the standard test set of 2007 examples. Compare your
performance with published results using other methods from at least one published paper,
for example [Shivaswamy and Jebara, 2008]. Do not overfit the test set!

For this project and for later ones, the only deliverable is a well-written joint report
for each team. As is the case for a research paper, your job is to inform and convince the
reader fully. Please bring a printed copy to the start of class on January 21.

To quote Sanjoy Dasgupta, “Discuss your results in precise and lucid prose. Content
is king, but looks matter too!” Your report should be self-contained and complete, but
concise. You should have separate sections for at least the following: (i) introduction,

8

(ii) design of algorithms, (iii) design of experiments, (iv) results of experiments, and (v)
findings and lessons learned.

The report should be typeset with LaTeX and have appropriate equations, tables, fig-
ures, citations, and references. Explain in reproducible detail your algorithms, especially
the heuristics that you invent, and the design of your experiments. These explanations
should be separate from actual experimental results. Some issues to discuss briefly in the
report include whether the training and test sets follow the same probability distribution,
and whether overfitting is a problem. Analyze the time and space complexity of your
algorithms, and provide brief timing results. Explain briefly the implementation choices
that allow your code for the algorithms to be fast.

Matlab notes
You should implement the LAESA algorithm. Design your own simple heuristic for
choosing the basis points. Do informal experiments to select how many basis points to
use. An important question is whether LAESA, or any other method, can be implemented
so that it actually is faster than “brute force” computation of all distances. Even if LAESA
can be implemented to be faster in some languages, it may be slower in Matlab because
Matlab performs large-scale matrix arithmetic very fast, but updating data structures and
performing logical tests in Matlab tends to be slow.

The following is the fastest Matlab code that I know for calculating Euclidean dis-
tances between a test point and all points in a training set. It is fast because it uses the
identity (a− b)2 = a2 − 2ab + b2 to avoid copying data.

function distances = calcdist(data,point)
% input: data matrix, single point (points are row vectors)
% output: column vector of distances
distances = sum(data.ˆ2, 2) - 2*data*point’ + point*point’;
distances = sqrt(distances);

Use this code as a starting point for your work. If you can make it significantly faster,
explain how in your report. If you can actually make LAESA faster, also explain how.

Generally, for fast Matlab subroutines use the Lightspeed toolbox published by Minka
at http://research.microsoft.com/en-us/um/people/minka/software/
lightspeed/.

9

References
[Aggarwal et al., 2001] Aggarwal, C. C., Hinneburg, A., and Keim, D. A. (2001). On the

surprising behavior of distance metrics in high dimensional spaces. In den Bussche,
J. V. and Vianu, V., editors, Database Theory - ICDT 2001, 8th International Confer-
ence, London, UK, January 4-6, 2001, Proceedings, volume 1973 of Lecture Notes in
Computer Science, pages 420–434. Springer.

[Devroye et al., 1994] Devroye, L., Gyorfi, L., Krzyzak, A., and Lugosi, G. (1994). On
the strong universal consistency of nearest neighbor regression function estimates. An-
nals of Statistics, 22:1371–1385.

[Kibriya and Frank, 2007] Kibriya, A. M. and Frank, E. (2007). An empirical compari-
son of exact nearest neighbour algorithms. In Proceedings of the 11th European Con-
ference on Principles and Practice of Knowledge Discovery in Databases (PKDD’07),
volume 4702 of Lecture Notes in Computer Science, pages 140–151. Springer.

[Ripley, 1996] Ripley, B. (1996). Pattern Recognition and Neural Networks. Cambridge
University Press.

[Shivaswamy and Jebara, 2008] Shivaswamy, P. K. and Jebara, T. (2008). Relative mar-
gin machines. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors, NIPS,
pages 1481–1488. MIT Press.

10

