Due officially in class at the start of the last lecture, on Thursday December 4. Unofficially, you may hand in this project without penalty at the start of the final exam, which is on December 11 at 8am.

In this last programming project, you will do experiments with reinforcement learning. The environment to use is the 3 by 4 gridworld shown on page 4 of the lecture notes by Prof. Stuart Russell. Following page 10 of the notes, when the agent attempts to perform an action (i.e. up, down, left, or right) then it performs each unintended feasible movement with probability 0.1, and it performs the intended movement with the remaining probability, which is either 0.8 or 0.9.

To begin, consider the case where the agent knows the transition probabilities explicitly. For this case, you should implement in Matlab the policy iteration method described on page 13 of Russell’s notes. Use Matlab’s built-in features to solve simultaneous linear equations. There are multiple ways to solve systems of linear equations in Matlab. Look for one that is efficient, i.e. that does not do full matrix inversion.

Check that your policy iteration algorithm produces approximately the state utilities shown on page 8 of the notes. Check also that with different values for the short-term reward you obtain the alternative optimal policies shown on page 6 of the notes.

Next, consider the true reinforcement learning case, where the agent must gradually learn the transition probabilities. Implement the Q-learning algorithm. Note that you must write code that simulates the environment, i.e. that generates the next state s' appropriately after the agent chooses an action a. This simulation code will use the true transition probabilities, but the learning algorithm cannot use them. In order to make systematic experimentation feasible, your implemen-
tation should be able to simulate at least 1000 trials per second. (A trial is one run of the agent in the gridworld.)

Check that your implementation of Q-learning can indeed find optimal policies, when it is initialized with Q values that are close to optimal. Then, do experiments with (i) different learning rates, (ii) different exploration strategies (epsilon-greedy versus softmax), and (iii) different initializations for the Q values. Search systematically for settings of the Q-learning algorithm that can learn an optimal policy in the minimum number of trials.

For these experiments, some good metrics to report are (i) the cumulative total reward after each trial, (ii) the utility of the start state after each trial, and/or (iii) the number of trials until an optimal policy is learned. It is common for the learned policy to be optimal even though the Q values are still inaccurate. Therefore, you should measure the goodness of a learned policy using the policy evaluation routine from the policy iteration part of the project, not using the learned Q values. Evaluate the current policy only after every D trials, where you choose D so that the time to evaluate policies does not slow down your code significantly.

What to submit. You should hand in a printout of your code, a printout of one or two sample runs showing how it works, and a short printed report. Your report should mainly describe the design of your experiments and present their results. Use figures and tables to present your results, and organize the report well.

Like before, for this assignment you may work either alone or in a team with one other student—your choice. If you work with someone else, you should hand in just one report and you will both get the same score for the project. Everything you submit should be printed, then stapled together and handed in at the start of lecture.