GalaTex
W3C XQuery Full-Text Implementation

Emiran Curtmola
University of California San Diego

Sihem Amer-Yahia, Philip Brown, Mary Fernández
AT&T Research Labs
Outline of the talk

- Motivation
- Architecture
- Full-text search primitives
- Optimizations
- GalaTex Demo
Motivation

XQuery/XPath engines

IR engines

books

book

author

author

content

para

para

text

text
Motivation

<table>
<thead>
<tr>
<th>Tools</th>
<th>Querying</th>
<th>Structure</th>
<th>Text</th>
<th>Scoring results</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR engines (i.e. Google, XXL, JuruXML, Elixir etc.)</td>
<td>Simple path expressions</td>
<td>Word, Boolean, Phrase, Proximity</td>
<td>Powerful</td>
<td></td>
</tr>
<tr>
<td>XPath 2.0</td>
<td>Powerful tree manipulation primitives</td>
<td>Substring matching only (i.e. contains, start-with, end-with) + string manipulation functions</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>XQuery 1.0</td>
<td>Powerful tree manipulation primitives</td>
<td>Fully composable primitives: FTSingleSearch(Token/Phrase), FTWordsSelectionWord(All/Any), FTWordsSelection(All/Any), FTAnd, FTOr, FTNegation, FTMildNegation, FTDistance, FTWindow, FTScope, FTTimes, FTOrdered</td>
<td>Under development</td>
<td></td>
</tr>
<tr>
<td>XSLT 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Full-Text Search in XML

- **Context expression (evaluation context)**
 i.e. set of book chapter nodes

- **Return expression**
 i.e. book title and paragraph nodes

- **Search expression**
 - full-text search primitives: and, distance...

- **Score expression**
 - scoring and ranking the results
The Goal

- Recommended W3C standards for XML querying: XPath 2.0 and XQuery 1.0
- Galax – fully compliant implementation of XPath 2.0/XQuery 1.0 developed by AT&T Labs (Mary Fernández) & Bell Labs
- W3C XQuery Full-Text spec. (first public draft in July 2004) based on the TeXQuery language (Amer-Yahia et al. WWW’04)
- GalaTeX = Galax + Full-Text search integration of queries on structured data and text data
Architecture

Galax XQuery engine

Full-Text Query

GalaTex Parser

Equivalent XQuery query

GalaTex Engine

AT&T Research Labs 2004, Florham Park - NJ
Architecture

Preprocessing & inverted lists generation

getPositions() containsPos() wordDistance()

inverted lists

Galax XQuery engine

Full-Text Query

GalaTex Parser

Equivalent XQuery query

GalaTex Engine
Architecture

Preprocessing & inverted lists generation

getPositions()
containsPos()
wordDistance()

inverted lists

Full-Text functions (FTWordsSelection, FTWindow, FTTimes etc.)

evaluation

GalaTex XQuery engine

Equivalent XQuery query

GalaTex Parser

Full-Text Query

.xml

.xml

.GalaTex Engine

AT&T Research Labs 2004, Florham Park - NJ
Architecture

Preprocessing & inverted lists generation

Full-Text functions (FTWordsSelection, FTWindow, FTTimes)

Predicate functions

Phrase Matching: FTWords
 FTSingleSearch(Token/Phrase)
 FTWordsSelection(Any/All)Word
 FTWordsSelection(Any/All)

Boolean Connectives:
 FTAnd | FTOr | FTNegation | FTMildNegation

Proximity Distance:
 FTDistance/FTWindow [exactly/at least/at most/from-to]

Order:
 FTOrdered

Repeats:
 FTTimes [exactly/at least/at most/from-to]
Composability

- Co-languages: Galax and GalaTex

Evaluate to a sequence of items:

- XQuery Expression

Convert sequence of items into AllMatches:
- FTWordSelection

Convert AllMatches to sequence of items:
- FTContains

Evaluate to AllMatches
Full-text predicates

Example query = find all book paragraphs that contain “software” and “users” at a distance at most 13 words of each other
FT Predicates – example

- GalaTex data model: AllMatches
 - positions of tokens within XML nodes
 - all possible matches
 - XML representation
- Input query: all “users” in book contents

```xml
<book id="1000">
  <author>Mary Rose</author>
  <content>
    <p>
      The usability of software measure how well the software provides support for quickly achieving specified goals for the users. 
    </p>
    <p>
      The users must be and feel well-served.
    </p>
  </content>
</book>
```

FT Predicates – example

- GalaTex data model: AllMatches
 - positions of tokens within XML nodes
 - all possible matches
 - XML representation
- Input query: all “users” in book contents

```xml
<book id="1000">
  <author>Mary Rose</author>
  <content>
    <p>The usability of software measure how well the software provides support for quickly achieving specified goals for the users. </p>
    <p>The users must be and feel well-served.</p>
  </content>
</book>
```

```
AllMatch
  Match
    StringInclude: "users"
      Pos 28
  Match
    StringInclude: "users"
      Pos 32
```

AT&T Research Labs 2004, Florham Park - NJ
FT Primitives – example

- FTAnd + FTDistance: //book/content/p[. ftcontains “users” && “software” at distance at most 13 words]

```
<book(1) id(2)="1000(3)">
  <author(4)>Mary(5) Rose(6)</author(7)>
  <content(8)>
    <p(9)> The usability(11) of software(13) measure how well(16) the software(18) provides(19) support(20) for quickly(22) achieving(23) specified(24) goals(25) for the users(28). </p(29)>
    <p(30)> The users(32) must be and feel well-served(37). </p(38)>
  </content(39)>
</book(40)>
```
FT Primitives – example

- FTAnd + FTDistance:
 \(//book/content/p[. ftcontains "users" \&\& "software" at distance at most 13 words] \)

<book(1) id(2)="1000(3)">
 <author(4)>Mary(5) Rose(6)</author(7)>
 <content(8)>
 <p(9)> The(10) usability(11) of(12) software(13) measure(14) how(15) well(16) the(17) software(18) provides(19) support(20) for(21) quickly(22) achieving(23) specified(24) goals(25) for(26) the(27) users(28). </p(29)>
 <p(30)> The(31) users(32) must(33) be(34) and(35) feel(36) well-served(37). </p(38)>
 </content(39)>
</book(40)>
FT Primitives – example

- FTAnd + FTDistance: //book/content/p[. ftcontains "users" && "software" at distance at most 13 words]

```
FTDistanceAtMost

FTAnd

FTWordsSelectionAny
FTWordsSelectionAny

getPosition() on the inverted lists

AM

AM

AM

AM

AllMatch

AllMatch

Match

Match

StrInclude "users"

StrInclude "users"

Pos 28

Pos 32

StrInclude "software"

StrInclude "software"

Pos 13

Pos 18

StrInclude "software"

StrInclude "software"

Pos 13

Pos 18

```

AT&T Research Labs 2004, Florham Park - NJ
FT Primitives – example

- **FTAnd + FTDistance**: //book/content/p[. ftcontains "users" && "software" at distance at most 13 words]

```
//book/content/p[ . ftcontains "users" && "software" at distance at most 13 words ]
```

- **FTDistanceAtMost**
- **FTAnd**
- **FTWordsSelectionAny**
- **FTWordsSelectionAny**

getPositions() on the inverted lists

- **AllMatch**

- **Match**
- **Match**
- **Match**
- **Match**

StrInclude
- "software"
- "users"
- "software"
- "users"
- "software"
- "users"
- "software"
- "users"

Pos
- 13
- 28
- 13
- 32
- 18
- 28
- 18
- 32
FT Primitives – example

- FTAnd + FTDistance: //book/content/p[. ftcontains "users" && "software" at distance at most 13 words]

FTDistanceAtMost

AM

FTAnd

AM

AM

FTWordsSelectionAny

FTWordsSelectionAny

getPositions() on the inverted lists

AllMatch

Match

StrInclude "software"

Pos 18

StrInclude "users"

Pos 28

StrInclude "software"

Pos 18

StrInclude "users"

Pos 32
Match Options

- Applicable on any Full-text predicate
 - Case sensitive (FTCaseOption)
 - Regular expression (FTRegexOption)
 - Stop words (FTStopwordOption in FTDistance/FTWindow)
 - Special chars (FTSpecialcharOption)
 - Stemming - word variations (FTStemOption)
 - Ignore (FTIgnoreOption - PIX)
 - Thesaurus (FTThesaurusOption)
 - Lang. diacritics (FTDiacriticsOption)
 - Language (FTLanguageOption)
Match Options

Query: //book/content/p[. ftcontains “usability” with stemming]

eval. context + usability

getPositions() filtered inv. list

inv. list

AM
Match Options

Query: //book/content/p[. ftcontains “usability” with stemming]
Match Options

Query: //book/content/p[. ftcontains "usability" with stemming]
Outline of the talk

- Motivation
- Architecture
- Full-text search primitives
- Optimizations
- GalaTex Demo
Optimizations

- Node & position lists are a bottleneck
 - Logical rewritings on the primitives tree
 - pushing down more restrictive selections
 - rewriting FToR into an XQuery “Or”
Optimizations

- Logical GalaTex evaluation tree rewrites
 - Pushing down more restrictive selections
Optimizations

- Logical GalaTex evaluation tree rewrites
 - Spliting an FTOr into an XQuery “OR”

![Logical GalaTex evaluation tree rewrites](image)
Optimizations

- Node & position lists are a bottleneck
 - Logical rewritings on the primitives tree
 - pushing down more restrictive selections
 - rewriting FTOr into an XQuery “Or”
 - Checking ancestor/descendant relationships between nodes, i.e. pruning EC on LCA
 - Sort merge to filter the inverted lists
 - EC and inverted lists
 - Pipeline evaluation engine

- Scoring: still preserve the above
Pipelining

FTDistanceAtMost

FTAnd

FTWordsSelectionAny FTWordsSelectionAny

getPositions in the inverted lists

AllMatch

Match

StrInclude "software" StrInclude "users"

Pos 13 Pos 28

StrInclude "software" StrInclude "users"

Pos 13 Pos 32

StrInclude "software" StrInclude "users"

Pos 18 Pos 28

StrInclude "software" StrInclude "users"

Pos 18 Pos 32
Pipelining (Quark)

- Inverted lists per token structured as:
- Not materializing
 - Inverted lists
 - Evaluation context

```
<table>
<thead>
<tr>
<th>nodeID</th>
<th>list of positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
```

- empty?
- FTDistanceAtMost
- FTAnd
- FTWordsSelectionAny
- FTWordsSelectionAny

- instantiate a pair of positions
- get next node in the EC
Conclusions

- Demo available at http://www.galaxquery.com/galatex

- Status
 - Inverted lists (document preprocessing)
 - Composable full-text search primitives
 - XML validation (AllMatches data model)
 - element names and types
 - W3C XQuery Full-Text use cases

- Ongoing work
 - Integrate match options and optimizations
 - Performance evaluation
 - Full integration of GalaTex into Galax
Thank you