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Abstract—Fast stream ciphers are used extensively for en-
crypted data transmission in mobile networks and over multi-
gigabit links. CryptMT, a recently proposed stream cipher, is
one of the final candidates for standardization by the European
Union’s eSTREAM project. Cryptanalysis of CryptMT has dis-
covered no feasible attacks thus far.

We present a scalable technique for parallelizing CryptMT and
present an area-efficient hardware implementation on a field-
programmable gate array (FPGA). On the Xilinx Virtex-2 Pro
FPGA, a 2× parallelization delivers throughputs of up to 16
Gbits/s while using minimal logic resources (1,782 slices). This
is highly area-efficient compared to implementations of ciphers
such as AES. Possibilities for higher degrees of parallelization
are also discussed.

I. INTRODUCTION

Ciphers are cryptographic algorithms that encrypt plaintext
data into ciphertext. There are two main classes of ciphers [1]:
stream ciphers, such as RC4 and CryptMT [2], use a time-
varying transformation to encrypt individual bits of plaintext;
block ciphers, such as AES and DES, operate with a fixed
transformation on large blocks of plaintext data. In general,
stream ciphers have lower complexity and higher throughput
than block ciphers. Due to these attractive properties, stream
ciphers are widely used in embedded/mobile applications such
GSM telephony (the A5 family of stream ciphers [3]), the
802.11 Wireless Encryption Protocol (WEP) [4] and Secure
Sockets Layer (SSL) [5]–both use the RC4 stream cipher and
the Bluetooth protocol (E0 stream cipher) [6].

In 2004, the European Union sponsored the eSTREAM1

project to identify new stream ciphers suitable for widespread
adoption. eSTREAM targets two different stream cipher pro-
files: 1) high performance (throughput) ciphers for software
implementation and 2) hardware-oriented ciphers optimized
for power and/or resource efficiency [7]. In April 2007,
eSTREAM entered the third and final evaluation phase with
CryptMT being one of the eight final software-profile candi-
dates.

We begin with the notation and definitions necessary to
understand CryptMT’s mathematical foundations. Then, we
discuss CryptMT’s core modules: its pseudo-random number
generator (PRNG) and the non-linear transformation. The
architectural optimizations that allow efficient hardware imple-
mentations of this software-centric stream cipher are presented
next, along with benchmarks of two field-programmable gate

1http://www.ecrypt.eu.org/stream

array (FPGA) based implementations. Finally, we elaborate
upon a massive parallelization technique that allows CryptMT
to scale to even higher throughputs.

II. STRUCTURE OF CryptMT

A stream cipher generates (encrypted) ciphertext by
XOR’ing a keystream with the plaintext message. CryptMT is
a symmetric stream cipher—both encryption and decryption
utilize the same keystream generator; this generator must
be initialized with a secret (mutually shared) key as well
as an initial vector (IV) that need not be secret. The key
and IV lengths can be chosen to vary from 128- to 2048-
bits; larger key-lengths imply a higher resistance to brute-
force (i.e., exhaustive key search) attacks. Like other stream
ciphers, CryptMT’s keystream sequence is generated by a non-
linear transformation of the output of a pseudo-random number
generator (PRNG) [2].

A. Notation and word-wise operations

We follow the notation of [2], where the 128-bit word x is
formed by concatenating four 32-bit words x[3], x[2], x[1] and
x[0], i.e.,

x = x[3]x[2]x[1]x[0]

• Word-wise operations: Operations with a ‘32’ or ‘64’
subscript operate on one 32-bit or 64-bit words at a time,
respectively; after the operation is completed, these words
are concatenated to form the 128-bit word. For example,
addition is defined as

x+32 y =
(x[3]+y[3])(x[2]+y[2])(x[1]+y[1])(x[0]+y[0]),

where the 32-bit words are added modulo 232 (no carries).
• Word-wise shifts: Similarly, word-wise shifts of x by S

bits are defined as

x�32 S = (x[3]� S)(x[2]� S)(x[1]� S)(x[0]� S)
x�64 S = (x[3]x[2]� S)(x[1]x[0]� S)

• Permutations: We also define a permutation
perm(x,order) that re-orders the 32-bit words of x
as order, e.g.,

perm(x, 0132) = x[0]x[1]x[3]x[2] (1)



TABLE I
WORD-WISE OPERATION BLOCKS IN CryptMT

Block Operation Example

perm-1 perm(x,0321) x[0]x[3]x[2]x[1]
pshift-1 pshift64(x,2031,3) x[2]x[0]x[3]x[1]⊕ (x�64 3)
pshift-2 pshift32(x,0321,1) x[0]x[3]x[2]x[1]⊕ (x�32 1)
pshift-3 pshift32(x,3210,16) x[3]x[2]x[1]x[0]⊕ (x�32 16)
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Fig. 1. Linear Pseudo-random Number Generator in CryptMT

• Perm-shifts: Permutations and w-bit word-wise shifts of
S-bits are combined (by an XOR) to form the perm-
shift operation pshiftw(x,order,S); pshifts are crucial to
CryptMT’s structure. An example of a pshift is:

pshiftw(x, 0132, S) = x[0]x[1]x[3]x[2]⊕ (x�w S). (2)

CryptMT involves four kinds of pshifts and perms whose
parameters are defined in Table I.

B. Linear Pseudo-random Number Generators

CryptMT’s keystream generator combines a linear pseudo-
random number generator (PRNG) with a non-linear multi-
plicative filter. The PRNG, called the Simple Fast Mersenne
Twister (SFMT), is a type of generalized feedback shift-
register (GFSR) from the Mersenne Twister (MT) long-period
PRNG family [8]. SFMT has a huge period of 219937 − 1,
operates on 128-bit words and has very good statistical char-
acteristics.

SFMT consists of a 19,937-bit state vector (i.e., shift reg-
ister) x, stored as N = 156 128-bit words, and the recurrence
equation to generate a new word xN+ j is defined as:

xN+ j = (xN+ j−1 & MASK)
⊕pshift64(xM+ j,2031,3)⊕perm(x j,0321), (3)

where ‘&’ is the bitwise AND operator, M = 108 is the “far
recurrence” offset, perm and pshift are as defined in (1) and
(2), and the MASK2 is 128 bits. Fig. 1 illustrates the state
vector and the generation of one PRNG output word, y; Table
I lists the operations performed by the perm-1 and pshift-1
blocks.
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Fig. 2. Non-linear Multiplicative Filter

C. Non-linear Multiplicative Filter

If an attacker obtains access to a sequence of the linear
PRNG’s output that is at least twice the state size (i.e.,
2× 19,937 ' 40 kbits), they can use it to reveal the internal
state of the linear feedback shift register using polynomial
factorization algorithms such as Berlekamp-Massey [1], [9].
The cipher is then compromised since all future outputs can
be predicted from that internal state. To prevent this, a non-
linear transformation consisting of a “multiplicative filter” is
applied to the PRNG output.

The multiplicative filter (Fig. 2) consists of an integer
multiplier ×̃ and a one-word accumulator; it takes two 128-
bit word inputs: the PRNG output y and the perm-shifted
feedback from the accumulator x. The multiplication ×̃32
operates individually on the four 32-bit words x[i] and y[i]
(i = 0, . . . ,3), as:

x[i]×̃32y[i] = (2x[i]y[i]+x[i]+y[i]) mod 232, (4)

which is essentially 33-bit (odd) integer multiplication [2].
The perm-shift (pshift-2) at the accumulator output further
mixes the filter’s internal memory as well as the upper bits
with lower bits. Finally, the pshift-3 block permutes the
output of (4), after which the 16 most significant bits of each
32-bit words are dropped and the 16 least significant bits are
used as the keystream output z.

III. PARALLELIZING CryptMT

FPGAs consist of reprogrammable logic blocks (called
slices or logic elements) and static block RAMs. An FPGA
implementation of CryptMT can be optimized for throughput
and/or area-efficiency by exploiting the algorithm as well as
FPGA architecture.

A. Architectural Optimizations for Area-Efficiency

As shown in Fig. 1, the linear PRNG requires four 128-
bit I/O operations (ops) per word output: 3 reads and 1 write
(feedback). Contemporary FPGA block RAMs are dual ported,
allowing two independent I/O ops per clock. One read is
saved by buffering the PRNG output/feedback word and re-
using it for the next output. Additionally, using the ‘read-
before-write’ operational mode (if available) saves another
I/O op by multiplexing a read/write on the same clock cycle;
writing new data to an address on an input port simultaneously
outputs (reads) the existing data at that address. This brings
the total down to two I/O ops, allowing the PRNG to generate

2MASK = ffdfafdf f5dabff ffdbffff ef7bffff
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Fig. 3. SFMT 2-way Interleaved Parallelization

one 128-bit output per clock while using only a single dual-
ported block RAM. Finally, logic resources can be conserved
by constructing the multiplicative filter from the embedded
multipliers or “DSP blocks” available on newer FPGAs.

B. Parallelization: Scaling to Higher Throughputs

In parallelizing CryptMT for higher throughputs, the design
must meet a very strict constraint: the parallelization method-
ology employed must not change any characteristics of the
output stream, thus maintaining security (i.e., the algorithm
is not modified) and backwards compatibility (e.g., a non-
parallelized ‘decrypter’ can successfully work with the output
of a parallelized ‘encrypter’, or vice versa). Meeting this
constraint is challenging since CryptMT consists of both linear
and non-linear components.

1) Interleave-Parallelizing the PRNG: Parallelization meth-
odologies for the long-period class of PRNGs (including the
Mersenne Twister) with various degrees of optimization exist
[10], [11]. The interleave-parallelization (IP) approach of [10],
in particular, already includes the area-efficient optimizations
of Section III-A; here we extend it to SFMT.

Interleave-parallelization exploits the fact that SFMT’s re-
currences are at constant offsets (modulo N); thus, the N-word
state-vector can be interleaved across multiple memory banks
with static inter-bank connections. Multiple words can now be
generated in one clock cycle by duplicating the circuitry that
computes the PRNG’s recurrence equation at the outputs of
these banks.

Figure 3 illustrates 2-way interleave-parallelization (2-IP)
for SFMT, where N = 156 and the recurrence offset M = 108.
Outputs y j depend on x[ j−1], x[ j] and x[ j +M] (all modulo
N, i.e., offsets wrap around); the outputs shown are computed
in parallel as functions of:

y0← f (x[155], x[0], x[108])
y1← f (x[0] = y0, x[1], x[109])

y0 is buffered and need not be re-read to compute y1.
2) Observations on Parallelizing the PRNG: The number

of IP-banks n must be a factor of (i.e., evenly divide) N;
equivalently, all n banks must have the same size. If this is
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Fig. 4. Parallelized Non-linear Multiplicative Filter

not the case, the inter-bank connections are no longer static
and IP becomes inefficient because of conditional routing
overhead such as extra multiplexers, longer critical paths,
etc. Thus, n-way parallelization of SFMT is possible where
{n : N mod n = 0}.

We also note that that our original constraint of not mod-
ifying the output stream, and thereby maintaining backwards
compatibility is met; an n j-IP encrypter can be interfaced to
an nk-IP decrypter (n j 6= nk) by simply adding, depending
on whether the intermediate channel is serial or parallel, the
appropriate de-interleaver/re-interleaver at each end.

While other methods for parallelizing long-period PRNGs
exist [10] that may be more efficient than IP, they invariably
permute the words in the output stream. This is inconsequential
if the output is being used for non-cryptographic applications
such as simulations, but would violate our constraint and be
non-backwards-compatible; we do not consider such methods.

3) Parallelizing the Non-linear Filter: As explained in Sec-
tion II-C, the PRNG’s output is transformed by the non-linear
multiplicative filter (Fig. 2). The filter contains an accumulator
(i.e., it has memory), and therefore cannot simply be dupli-
cated like the recurrence circuitry if backwards-compatibility
is to be maintained. Instead, an n-IP filter is implemented as
a cascade of n− 1 modified filter stages that contain delays
and adders (not accumulators) with one standard filter stage.
The delay-adder combinations act as effective accumulators—
the memory is provided by the single accumulator in the first
(standard) stage.

Figure 4 shows the structure of a 2-way parallelized multi-
plicative filter with two 128-bit inputs that produces two 64-bit
ciphertext outputs per clock cycle. From a timing perspective,
it is crucial to balance the delays used to pipeline the filter
for higher speed with the delays required in the cascade to
correctly compute the n-outputs.

IV. HARDWARE IMPLEMENTATION

We implemented non-parallelized and 2-way parallelized
versions of CryptMT on the Xilinx Virtex-II Pro family of
FPGAs. Here, we discuss the framework used to enable real-
world deployment of CryptMT and address the performance
of our implementations.

A. The CryptMT FPGA Framework
CryptMT must be initialized with a smaller PRNG called the

“booter”, which also generates the first N×64 ciphertext bits.
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Additionally, a CryptMT hardware peripheral on an FPGA
must be able to communicate with the plaintext source and
ciphertext destination (over TCP/IP, USB, etc.). To co-ordinate
these tasks, we create a framework around a microprocessor
that is embedded in the FPGA (a ‘soft’ processor constructed
from FPGA logic can also be used). This processor, a Pow-
erPC 405 in our case, connects to the CryptMT peripheral via
a point-to-point Fast Simplex Link (FSL) bus. To save logic,
the one-time “booter” is executed in software on the PowerPC,
which also transfers data (plaintext, ciphertext, initial state and
control information) to/from the CryptMT peripheral.

Additionally, the PowerPC interfaces to the following on-
chip peripherals via the Processor Local Bus (PLB) and On-
chip Peripheral Bus (OPB):

1) A 256 MB Double Data Rate (DDR) SDRAM module
(through a logic-based controller), providing additional
memory for storing test run data.

2) An RS232 UART to communicate debug and control
information to and from a PC.

3) A 10/100 Fast Ethernet MAC (and associated PHY link)
for data transfer.

4) A USB-JTAG connection for debugging the PowerPC
and transferring data.

B. Implementation

We implemented the standard CryptMT as well as a 2-
way parallelized version in VHDL on the Xilinx Virtex-II Pro
XC2VP30 FPGA that consists of 13,696 slices, 136 embedded
multipliers and 136 18-kbit dual-ported block RAMs. Table II
presents the resource usage and performance characteristics of
both implementations. The standard version can be clocked
up to 200.3 MHz (12.821 Gbits/s throughput) and the 2-
parallel version up to 126.4 MHz (16.18 Gbits/s). As can be
seen, the resource usage scales linearly when going to 2-way
parallelization; the throughput, on the other hand, does not.
We believe this discrepancy can be resolved and linear scaling
for throughput attained by exploiting the denser packing and
other advanced features on newer FPGA devices such as the
Virtex-4 and 5.

V. DISCUSSION

A. Comparison with other Stream Ciphers

CryptMT’s area-efficiency (throughput/slice) is an order of
magnitude better than recent fast FPGA implementations of

AES [12], [13] and RC4 [14] that also used the Virtex-II family
FPGAs; Table II includes a detailed comparison.

Table II also summarizes three recent eSTREAM Phase
3 hardware-oriented ciphers that were implemented on the
Xilinx Spartan 3 FPGAs [15]. CryptMT started out as a
software-oriented cipher and its implementations naturally
have higher resource usage than some of the hardware-oriented
eSTREAM candidates; however, as noted in Table II, CryptMT
provides much larger keylengths and longer periods (i.e., much
better resistance to attacks) than the hardware ciphers. For the
hardware designer considering eSTREAM candidates, which
cipher to use is a trade-off based on the amount of resources,
speed and the security desired.

B. Cryptanalysis of CryptMT

The eSTREAM candidates have been subjected to external
cryptanalysis; neither these nor the CryptMT authors’ efforts
have revealed any feasible attacks on the cipher thus far. Some
cryptanalytic issues that were addressed include the long key
length (128 to 2048-bits) which provides resilience against
brute-force attacks, with the choice of keyspace size dependent
on the user’s needs; the extremely long internal state space
which provides security against time-memory-tradeoff (TMTO)
attacks [19]; and the 155-dimensional equidistribution of the
PRNG and non-linear multiplicative filter which invalidate
correlation attacks[20].

C. Massive Parallelization with Multiple CryptMT units

Even higher throughputs with similar area-efficiency can be
achieved by interleaving the plaintext input across multiple
CryptMT units in parallel (“massive parallelization”). This is
different from the internal parallelization of CryptMT unit we
have discussed so far; each unit in a massively parallel system
can, of course, be internally parallelized too.

For such a massively parallel scheme to be secure, the out-
puts from the multiple PRNGs must be uncorrelated given just
one common key/IV pair for initialization. A guaranteed way
to achieve this is to have the PRNGs generate non-overlapping
sub-sequences of the original long-period sequence.

Such multiple PRNGs must be initialized with successive
states corresponding to the sub-sequence interval points, e.g.
21000, 22000, etc. Running a PRNG for 21000 outputs to find
these starting points is not feasible. However, a new technique
for ‘fast jump ahead’ in long-period linear PRNGs (such
as CryptMT’s) has recently been proposed [21]. It exploits
polynomial arithmetic to calculate the jumps for the sub-
sequences in 5-15 ms on current Intel/AMD CPUs. A proof-
of-concept hardware demonstration of this technique exists
[10], and could be ported to the CryptMT framework to enable
massive parallelization.

VI. CONCLUSION

We have presented the first FPGA-based hardware imple-
mentation of the CryptMT stream cipher in both parallelized
and non-parallelized forms; these implementations utilized
several algorithmic and architectural optimizations and are



TABLE II
CRYPTMT RESOURCE USAGE, PERFORMANCE AND COMPARISON

Cipher Slices (%)
Block

RAMs (%)
Throughput

(Gbits/s)
Mbps /
Slice

Max Period
(Bits)

Key Length
(Bits)

CryptMT (standard) 878 (6.43%) 4 (2.94%) 12.821 14.60 219937 − 1 128-2048

CryptMT (2-IP) 1782 (13.01%) 8 (5.88%) 16.179 9.08 219937 − 1 128-2048

(eSTREAM HW ciphers)

Trivium (×64) [16] 344 (9.60%) — 13.504 39.26 264 − 1 80

Grain 128 [17] 50 (6.51%) — 0.196 3.92 2256 − 1 128

F-FCSR-16 [18] 471 (61.72%) — 2.144 4.53 2128 − 1 128

(other implementations)

AES [12] 5177 (37.8%) 84 (61.7%) 21.54 4.16 — 128

AES [13] 422 (3.03%) 37 (27.2%) 1.30 3.15 — 128

RC4 [14] 138 (8.98%) 3 (2.20%) 0.12 0.87 N/A 8-128

substantially more area-efficient than previous FPGA imple-
mentations of ciphers such as AES. We also elaborated upon a
methodology for parallelizing CryptMT that increases through-
put while maintaining area-efficiency. Future work includes
further optimization of CryptMT on FPGAs as well as a
massively parallelized system of CryptMT units on a single
FPGA that can encrypt/decrypt multiple Gigabit Ethernet links
at line speeds.
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