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When modifying code in large software systems, software developers must 
know: What other dependent !les need to be modi!ed as a result of this change? 
Dependencies can be di!cult to detect. This is especially true when the code 
base is large or contains "les of di#erent formats (e.g. code in di#erent lan-
guages, meta data, web documents, etc.). Given any set of starter !les that the 
developer wishes to modify, we want to automatically recommend possible 
dependent "les that the developer must update to ensure correctness of code.

Problem Overview Datasets & Results

Footnotes & References

Mining Development Histories
Mining development histories involves:

(1) Obtain log from control versioning 
system (e.g. SVN) for code base

(2) Each check-in (or transaction) de-
notes sets of jointly modi"ed "les

(3) Use transactions to "nd patterns of 
jointly modi"ed "les and reveal 
dependencies

(4) Recommend dependent "les for 
starter "les s

The development history is represented 
by an N (# of transactions) by D (# of 
"les) binary matrix. Non-zero elements 
in a row indicate "les that were 
checked-in together and thus, jointly 
modi"ed at some point in time.
Each starter set is an incomplete transaction; "nding dependent "les is done by 
solving a problem in binary matrix completion.  We explore four latent variable 
models (LVMs) for this task.

Impact Analysis4

‣ Analyzes semantic content of code 
using call graphs, dynamic/static 
slicing, etc.

‣ Fails in identifying cross-language 
or cross-program dependencies. 

Frequent Itemset Mining (FIM)5,6

‣ Mines development history 
‣ E!ciently stores the number of 

times each possible "le set has 
been jointly modi"ed

‣ Recommends "les that have been 
jointly modi"ed with s more than 
t times

Related Methods

Datasets were constructed from 
check-in records of three large, 
open source systems. Test sets 
were constructed by randomly 
choosing starter !les from each transaction; remaining !les became the "ground 
truth" that our models try to predict. We report our results with varying values of 
support3 and start (# of starter !les) below. The f-measure1 (in gray) and correct 
prediction ratio2 (in blue) are used as evaluation metrics.

Mozilla Firefox Eclipse Subversive Gimp
Dates Mar 2007 - Nov 2007 Dec 2006 - May 2010 Nov 2007 - May 2010

Support Train Test # Files Train Test # Files Train Test # Files
15 9,015 2,266 778 316 92 38 5,084 3,436 899
25 8,021 1,771 411 233 59 25 4,469 3,012 447

[1] f-measure: harmonic mean of precision and recall
[2] correct prediction ratio: fraction of correct predictions, assuming # of !les to predict are given (alleviates thresholding problem)
[3] support: number of transactions each !le must appear in in order to be considered (a method of pruning to reduce noisy !le data)
[4] Robert Arnold, et. al. Software Change Impact Analysis. IEEE Computer Society, 1996
[5] Annie Ying, et. al. Predicting source code changes by mining change history. IEEE Transactions on Software Engineering, 2004
[6] Thomas Zimmerman, et. al. Mining version histories to guide software changes. International Conf. on Software Engineering, 2004

Mozilla Firefox Eclipse Subversive Gimp
Model Support Start = 1 Start = 3 Start = 1 Start = 3 Start = 1 Start = 3

FIM
15 0.129 0.144 0.127 0.194 0.141 0.461 0.319 0.632 0.014 0.091 0.016 0.159
25 0.124 0.135 0.110 0.195 0.227 0.616 0.360 0.637 0.006 0.057 0.010 0.095

BMM
15 0.160 0.202 0.110 0.141 0.181 0.486 0.350 0.489 0.134 0.205 0.085 0.143
25 0.177 0.218 0.130 0.160 0.251 0.566 0.382 0.482 0.117 0.212 0.010 0.131

BBM
15 0.192 0.340 0.180 0.376 0.202 0.607 0.374 0.769 0.114 0.200 0.107 0.183
25 0.197 0.360 0.175 0.391 0.262 0.694 0.418 0.756 0.110 0.206 0.103 0.179

RBM
15 0.156 0.246 0.063 0.310 0.157 0.238 0.138 0.423 0.080 0.148 0.024 0.205
25 0.172 0.269 0.088 0.340 0.200 0.426 0.259 0.524 0.062 0.143 0.025 0.230

LPCA
15 0.182 0.254 0.157 0.295 0.138 0.452 0.281 0.615 0.124 0.200 0.145 0.288
25 0.174 0.277 0.162 0.325 0.247 0.605 0.344 0.625 0.100 0.205 0.131 0.230

LVMs outperform the popular FIM approach on all datasets. While FIM simply 
looks at co-occurence data, LVMs can exploit higher-order information by discov-
ering underlying structure in data, leading to better predictions. LVMs also have 
an advantage over traditional impact analysis in its ability to !nd dependent !les 
that span di"erent languages and !le formats. 

Bernoulli Mixture Model (BMM)
EM is used to learn parameters !, µ of hidden clusters.

Bayesian Bernoulli Mixture Model (BBM)
BBM is a Bayesian treatment for BMM, where 

Collapsed Gibbs sampling is used to estimate the ex-
pected values of  Pr(x|s) under the posterior.

Restricted Boltzman Machines (RBM)
RBMs model the joint distribution over data x  and bi-
nary hidden units y: 

Here, W stores weight matrix between layers.
The RBMs are trained using contrastive divergence.

Logistic PCA (LPCA)
LPCA !nds the low-rank log-odds matrix " that maxi-
mizes the log-likelihood of the observed data, X:

The low-rank factorization " =UV is used to complete 
the missing binary data.

Pr(π|α) ∼ Dirichlet(α/k, . . . , α/k)

Pr(µj |β, γ) ∼ Beta(β, γ)

Pr(x,y) = 1

Z
exp(−xT Wy − bT x − cT y)

LX =
∑

nd
[Xnd log σ(Θnd)+(1−Xnd) log σ(−Θnd)]

Latent Variable Models
The problem set-up is pictured on the right. 
All models treat the binary elements of each 
transaction as observed variables x for train-
ing. Given a set of starter !les s, each model 
recommends !les whose posterior probabil-
ity Pr(x = 1|s = 1) exceeds some threshold.
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