A Connectionist Model of English Past-Tense and Plural Morphology

Kim Plunkett and Patrick Juola

Slides: Dana Dahlstrom
CSE 258A, UCSD
2002.04.17
English Past-Tense Inflection

- The -ed suffix forms the past tense of most English verbs, but a significant minority take an irregular form.

- Children learning English exhibit a U-shaped developmental profile.

- Symbolic theorists postulate a two-route mechanism: memorization of irregulars and a default rule system for everything else.

- Connectionists argue a single associative route is adequate.
Noun Plurals and the Past Tense: Similarities

• Both have a general rule with a small, semi-regular group of common exceptions.

• They have similar developmental profiles.

• Many phonotactic features are relevant to both.
Noun Plurals and the Past Tense: Differences

- There are far fewer irregular nouns than irregular verbs, but the irregular nouns are individually more frequent.

- Nouns are more frequent in running text.

- Irregular verbs are more irregular (e.g., all noun plurals share onsets with the singular form).
Questions

• Do regular nouns and verbs have separate inflectional routes?

• Does one associative memory system handle irregular nouns and verbs?

• How can we explain the functional separation between regular and irregular forms?
Inflection and Meaning May Be Linked

- Denominal verbs are regularized even when there is a homophonous irregular verb:

 flied out vs. flew out
 ringed vs. rang
 sticked vs. stuck

 Comment: The denominals here are all sports terms.

- A non-denominal verb where there are two past-tense inflections with different meanings:

 hanged vs. hung
Inflection and Meaning May Not Be Linked

• Slip-of-the-tongue data show (even irregular) inflection can occur positionally without regard to sentence meaning:

 days of the week becomes weeks of the day
 know one if I heard it becomes hear one if I knew it

• Comment: Anyway, people often get the wrong past-tense inflection when there are two of them with different meanings.
Problems with the Dual-Route Model

Plunkett and Juola claim the dual-route model must appeal to a complex rule system to account for certain variations:

- Words which are irregular with respect to one form but not others:

The past tense of *go* is *went*, but the plural is *goes*.

- Some denominal verbs are derived from singular noun forms, while others are derived from plurals:

 knife, to knife, knifed vs. half, to halve, halves
Connectionism to the Rescue

• Form variations are more easily accommodated because the representation doesn’t require systematic rule applications.

• Unlike the dual-route model, the single-route model would explain why voicing assimilation and epenthesis rules are the same for verb past-tense and noun plural inflections.

• Comment: Perhaps it would even help explain why inflections are often the same: English noun plurals, third-person singular present tense, and possessive nouns all use the -s inflection.
Experimental Design
Approach

Plunkett and Juola built a single-system connectionist model to simultaneously learn verb past tense and noun plural inflections.

- Their focus is on the time course of acquisition.
- The model’s performance patterns are similar to children’s.
Task Formulation

The network converts a stem to an inflected form. This formulation assumes:

- an *a priori* concept of “stem” and inflectional paradigms
- the ability to analyze language sounds correctly
- a mental lexicon, including some syntax and semantics
Network Design and Layout

- The design is a feed-forward, multilayer perceptron network.

- The input is a phonological representation of the stem plus a syntactic category.

- The output is a phonological representation of the inflected form.

- 130 input units, 160 output units, 200 hidden units
Network Configuration and Training

• The initial weights were randomly selected from $[-0.5, 0.5]$.

• The network was presented with each pattern individually in random order and trained with backpropagation for each.

• The learning rate $\eta = 0.1$, and the momentum $\alpha = 0$.
Input/Output Representation

- sixteen-bit phonetic feature vectors [Figure 4.1, Table 4.1]

- input: 8 vectors (CCCVVCCC) plus two bits for syntactic form (=130 bits)

 cat (/k&t/) represented by ##k##&##t
 cot (/kAt/) represented by ##k##A##t
 child (/CaIld/) represented by ##CaI##ld

- output: (guess) 10 vectors (CCCVVCCCVC) (=160 bits)

 cats (/k&ts/) represented by ##k##&##t#s or ##k##&##ts##
 children (/CiI/dr@n/) represented by ##C#iIldr@n
Training Data

• Examples consist of monosyllabic noun and verb stems with no “foreign” sounds, together with their inflected forms.

• The token frequencies were taken from written, edited, adult-to-adult communication, not spoken child-directed communication.
Type Breakdown

<table>
<thead>
<tr>
<th>category</th>
<th>stems</th>
<th>noun plural</th>
<th>past tense</th>
<th>total types</th>
</tr>
</thead>
<tbody>
<tr>
<td>noun only</td>
<td>1,680</td>
<td>1,680</td>
<td>0</td>
<td>1,680</td>
</tr>
<tr>
<td>verb only</td>
<td>346</td>
<td>0</td>
<td>346</td>
<td>346</td>
</tr>
<tr>
<td>homonymous</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>1,200</td>
</tr>
<tr>
<td>all</td>
<td>2,626</td>
<td>2,280</td>
<td>946</td>
<td>3,226</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(70.68%)</td>
<td>(29.32%)</td>
<td>(100.00%)</td>
</tr>
<tr>
<td>regular</td>
<td></td>
<td>2,254</td>
<td>824</td>
<td>3,078</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(69.87%)</td>
<td>(25.54%)</td>
<td>(95.41%)</td>
</tr>
<tr>
<td>irregular</td>
<td></td>
<td>26</td>
<td>122</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.81%)</td>
<td>(3.78%)</td>
<td>(4.59%)</td>
</tr>
</tbody>
</table>
Token Breakdown

<table>
<thead>
<tr>
<th>category</th>
<th>noun plural</th>
<th>past tense</th>
<th>total tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>13,045</td>
<td>4,084</td>
<td>17,129</td>
</tr>
<tr>
<td></td>
<td>(76.16%)</td>
<td>(23.84%)</td>
<td>(100.00%)</td>
</tr>
<tr>
<td>regular</td>
<td>12,841</td>
<td>3,087</td>
<td>15,928</td>
</tr>
<tr>
<td></td>
<td>(74.97%)</td>
<td>(18.02%)</td>
<td>(92.99%)</td>
</tr>
<tr>
<td>irregular</td>
<td>204</td>
<td>997</td>
<td>1,201</td>
</tr>
<tr>
<td></td>
<td>(1.19%)</td>
<td>(5.82%)</td>
<td>(7.01%)</td>
</tr>
</tbody>
</table>

- they applied function $\log_2(f_{\text{freq}}^2 + 1)$ to flatten the distribution
- they also tried $\log_2(f_{\text{freq}}^2 + 1)^2$
Test Methodology

• Simulations were run 5 times with random initial weights, and the results were averaged.

• The system’s performance was evaluated after each training epoch.
Experiments
Simulation 1

- The network was trained on the entire corpus at each epoch.

- The goal was to establish a baseline performance, not to model real-life learning. [Figure 4.2]

- Comment: The ranking of forms by final performance is the same as the ranking by prevalence in the training set.

- Comment: Humans can learn this way, but they tend not to retain it.
Simulation 2 Setup

- They began with a small training set comprising the 20 most frequent forms.

- Forms were added in decreasing token frequency order every 5 epochs.

- Irregulares are prevalent among frequent forms.
Simulation 2 Results

• The U-shaped curve appears. [Figure 4.4]

• Again, performance corresponds to training set prevalence.

• Why are the plot lines after epoch 115 in Figures 4.3 and 4.4 not precisely the same? (They are close.)
Analysis
Frequency Compression

• The \(\log_2(\text{freq}^2 + 1)^2 \) compression scheme resulted in severely diminished performance on all forms but regular nouns.

• The aim of frequency compression is to capture saliency; they point out other factors such as meaning are important.
Overregularization

• The overregularization rates for nouns and verbs over the course of one simulation are depicted in Figure 4.5.

• The overall overregularization rates are “broadly similar” to those found in children (within an order of magnitude).

• Nouns were overregularized earlier and more frequently; Marchman et al. also found this phenomenon in children.
Categorial Error Analysis

- Overregularization was significantly more frequent than irregularization, as in children.

- The most frequent irregular words were immune to overregularization.

- No-change errors were more likely on stems ending in an alveolar consonant (presumably alveolar stops: /t/ and /d/).

- No-change verbs were half as likely to be overregularized.
Generalization

- Novel nouns were regularized earlier than verbs. [Figure 4.6]

- The network learned to null inflect novel verbs ending in an alveolar stop (/d/ or /t/) and to regularize novel verbs ending in a dental fricative (/D/ or /T/). This is rule-like behavior. [Table 4.4]
Critical-Mass Effects

- Novel-word regularization increases with vocabulary size.

- Nouns and verbs show approximately the same novel-word regularization rate vs. vocabulary size curve. [Figure 4.7]

- There are fewer verbs in the training set, so they take longer to reach critical mass. [Figure 4.6]
Assimilation Effects

- Pinker and Prince proposed a “downstream” voicing module; Plunkett and Juola aim to show the effects can be captured in a single system.

- No single input feature strongly predicted output voicing, though nasality and labialism inhibited an epenthetic schwa.

- Nevertheless, the network made very few voicing errors even on novel stems with “don’t care” syntactic units.
Denominal and Deverbal Forms

- The network treated cross-paradigmatic inflections nearly identically to novel forms. [Figure 4.8] (cf. Figure 4.6)

- They added 50-bit random “pseudosemantic” vectors to the input types, then presented the network with known irregular forms but novel semantics.

- The network regularized the novel-semantics forms 4 times as often as it produced the original irregular inflection.

- Regularization increases with the number of semantic units.
Summary and Evaluation
(Secondary) Data Contact

• All simulations learned the training corpus to near perfection.

• Overregularization displayed a U-shaped development profile.

• The development of verb past tense trailed noun plurals.
More (Secondary) Data Contact

- The network generalized strongly at around 100 forms.

- No-change past-tense forms resisted overregularization.

- Overregularization was the most frequent verb inflection error, followed by no change, then blend.
Task Veridicality

- Human probably map from a thought to a correctly inflected expression.

- The network maps from a phonological representation of a stem to a phonological representation of an inflected form.
Input Representativeness

- The raw frequencies came from written, published, adult-to-adult communication, not child-directed communication.

- On the other hand, children are certainly exposed to adult communication.

- Frequency compression is somewhat open to criticism.
Conclusions

• Plunkett and Juola rebutted a few criticisms of connectionism from the symbolic crowd.

• Their model shows good performance and significant generalization, even to novel and cross-categorial forms.

• It makes good contact with a lot of data about morphology acquisition in children, and makes a few empirical predictions.