Implicit Imitation in Multiagent Reinforcement Learning

Bob Price and Craig Boutilier
ICML-99

Slides: Dana Dahlstrom
CSE 254, UCSD
2002.04.23

Overview

- Learning by imitation entails watching a mentor perform a task.
- The approach here combines direct experience with an environment model extracted from observations of a mentor.
- This approach shows improved performance and convergence compared to a non-imitative reinforcement learning agent.
Background

- Other multi-agent learning schemes include:
 - explicit teaching (demonstration)
 - sharing of privileged information
 - elaborate psychological imitation theory
- All these require explicit communication, and usually voluntary cooperation by the mentor.
- A common thread: the observer explores, guided by the mentor.

Implicit Imitation

In *implicit* imitation, the learner observes the mentor’s state transitions but not its actions.

- No demands are made of the mentor beyond ordinary behavior.
 - no voluntary cooperation
 - no explicit communication
- The learner can take advantage of multiple mentors.
- The learner is not forced to follow in the mentor’s footsteps.
 - can learn from negative examples without paying a penalty
Markov Decision Processes

A preliminary assumption: the learner and mentor(s) act concurrently in a single environment, but their actions are noninteracting. Therefore the underlying multi-agent Markov decision process (MMDP) can be factored into separate single-agent MDPs \((S, A, Pr, R)\).

- \(S\) is the set of states.
- \(A\) is the set of actions.
- \(Pr(t|s,a)\) is the probability of transitioning to state \(t\) when performing action \(a\) in state \(s\).
- \(R(s,a,t)\) is the reward received when action \(a\) is performed in state \(s\) and there is a transition to state \(t\).

Further Assumptions

- The learner and mentor have identical state spaces: \(S = S_m\)
- All the mentor’s actions are available to the learner: \(A \supseteq A_m\)
- The mentor’s transition probabilities apply to the learner: for all states \(s\) and \(t\), if \(a \in A_m\) then \(Pr(t|s,a) = Pr_m(t|s,a)\).
- The learner knows its own reward function \(R(s,a,t) = R(s)\).
- The learner can observe the mentor’s state transitions \((s,t)\).
- The horizon is infinite with discount factor \(\gamma\).
The Reinforcement Learning Task

The task is to find a policy \(\pi : S \to A \) that maximizes the total discounted reward. Under such an optimal policy \(\pi^* \), the total discounted reward \(V^*(s) \) at state \(s \) is given by the Bellman equation:

\[
V^*(s) = R(s) + \gamma \max_{a \in A} \left\{ \sum_{t \in S} \Pr(t|s, a) V^*(t) \right\}
\]

(1)

- Given samples \((s, a, t) \) the agent could
 - estimate an action-value function directly via Q-learning, or
 - estimate \(\Pr \) and solve for \(V^* \) in Equation (1).
- Prioritized sweeping converges on a solution to the Bellman equation as its estimate of \(\Pr \) improves.

Estimating the Transition Probabilities

The transition probabilities can be estimated by observed frequencies

\[
\hat{\Pr}(t|s, a) = \frac{\text{count}\left((s, a, t) \right)}{\sum_{t' \in S} \text{count}\left((s, a, t') \right)}
\]

For all states \(t \), as the number of times the learner has performed action \(a \) in state \(s \) approaches infinity, the estimate \(\hat{\Pr}(t|s, a) \) converges to the actual probability \(\Pr_m(t|s, a) \).
Estimating the Mentor’s Transition Probabilities

Assuming the mentor uses a stationary, deterministic policy π_m,

$$\Pr_m(t|s) = \Pr_m(t|s, \pi_m(s))$$

In this case the mentor’s transition probabilities too can be estimated by observed frequencies

$$\hat{\Pr}_m(t|s) = \frac{\text{count}_m((s, t))}{\sum_{t' \in S} \text{count}_m((s, t'))}$$

For all states t, as the mentor’s visits to state s approach infinity, the estimate $\hat{\Pr}_m(t|s)$ converges to the actual probability $\Pr_m(t|s)$.

Augmenting the Bellman Equation

Lemma: The imitation learner’s state-value function is specified by the augmented Bellman equation

$$V^*(s) = R(s) + \gamma \max \left\{ \sum_{t \in S} \Pr_m(t|s)V^*(t), \max_{a \in A} \left\{ \sum_{t \in S} \Pr(t|s, a)V^*(t) \right\} \right\} \quad (2)$$

Proof idea: Since $\Pr_m(t|s) = \Pr(t|s, \pi_m(s))$, the first summation is equal to the second when $a = \pi_m(s)$. We know $\pi_m(s) \in A$ because $\pi_m(s) \in A_m$ and $A_m \subseteq A$; therefore the first summation is redundant and Equation 2 simplifies to Equation 1.

Extension to multiple mentors is straightforward.
Augmented Bellman Backups

Bellman backups update state-value estimations. The augmented Bellman equation suggests the update rule

\[
\hat{V}(s) \leftarrow (1 - \alpha)\hat{V}(s) + \alpha R(s) + \alpha \gamma \max \left\{ \sum_{t \in S} \hat{\Pr}_m(t|s)\hat{V}(t), \max_{a \in A} \left\{ \sum_{t \in S} \hat{\Pr}(t|s,a)\hat{V}(t) \right\} \right\}
\]

where \(\alpha\) is the learning rate.

Confidence Estimation

The learner must rely on estimates \(\hat{\Pr}(t|s,a)\) and \(\hat{\Pr}_m(t|s)\). It is best to account for the unreliability of these estimates.

- \(\hat{\Pr}(t|s,a)\) and \(\hat{\Pr}_m(t|s)\) are multinomial distributions; assume Dirichlet priors over them.

- Compute the learner’s value function \(V(s)\) and the mentor’s value function \(V_m(s)\) within suitable confidence intervals; let \(v^-\) and \(v_m^-\) be the lower bounds of these intervals.

- If \(v_m^- < v^-\), then ignore mentor observations; either the mentor’s policy is suboptimal or confidence in \(\hat{\Pr}_m\) is too low.
Accommodating Action Costs

When the reward function $R(s, a)$ depends on the action, how can it be applied to mentor observations without knowing the mentor’s action?

Let $\kappa(s)$ denote an action whose transition distribution at state s has minimum Kullback-Leibler (KL) distance from $Pr_m(t|s)$:

$$\kappa(s) = \arg\min_{a \in A} \left\{ -\sum_{t \in S} Pr(t|s, a) \log Pr_m(t|s) \right\} \quad (3)$$

Using the guessed mentor action $\kappa(s)$, the augmented Bellman equation can be rewritten as

$$V^*(s) = \max \left\{ \begin{array}{l} R(s, \kappa(s)) + \gamma \sum_{t \in S} Pr_m(t|s) V^*(t), \\
R(s, a) + \gamma \max_{a \in A} \left\{ \sum_{t \in S} Pr(t|s, a) V^*(t) \right\} \end{array} \right\}$$

Prioritized Sweeping

In prioritized sweeping (Moore & Atkeson, 1993) N backups are performed per transition.

- Maintain a queue of states whose value would change upon backup, prioritized by the magnitude of change.

- At each transition $\langle s, t \rangle$:
 1. If a backup would change its value more than a threshold amount θ, insert s into the queue.
 2. Do backups for the top N states in the queue, inserting their graphwise predecessors (or updating their priorities) if backups would change their values more than θ.

Implicit Imitation in Prioritized Sweeping

To incorporate implicit imitation into prioritized sweeping:

- do backups for mentor transitions as well as learner transitions
- use augmented Bellman instead of standard Bellman backups
- ignore the mentor-derived model when confidence in it is too low

Implicit Imitation in Q-Learning

Model extraction can be incorporated into algorithms other than prioritized sweeping, such as Q-learning.

- Augment the action space with a placeholder action $a_m \in A$.
- For each transition (s, t) use the update rule:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left(R(t) + \gamma \max_{a' \in A} Q(t, a') \right)$$

where $a = a_m$ for observed mentor transitions, and a is the action performed by the learner otherwise.
Action Selection
An ε-greedy action selection policy ensures exploration:
- with probability ε, pick an action uniformly at random
- with probability $1 - \varepsilon$, pick the greedy action

The “greedy action” is here defined as the a whose estimated distribution $\hat{\Pr}(t|s, a)$ has minimum KL distance from $\hat{\Pr}_m(t|s)$.

Experimental Setup
To evaluate their technique, the authors simulated three different agents:
- an expert mentor following an ε-greedy policy with $\varepsilon \in \Theta(0.01)$
- an imitative prioritized sweeping learner observing the mentor
- a non-imitative prioritized sweeping learner

They compare the imitation learner’s performance to that of the non-imitation learner, as a control.
- The learners use the same parameters, including a fixed number of backups per sample.
- The learners’ ε decays over time.
Figure 1: Performance in a 10×10 grid world with 10% noisy actions.

Figure 2: Imitation vs. control for different grid-world parameters.
Figure 5: A “complex maze” grid world.

Figure 6: Performance in the grid world of Figure 5.
Figure 7: A “perilous shortcut” grid world.

Figure 8: Performance in the grid world of Figure 7.
Figure 9: A grid world with multiple mentors whose trajectories are different from, but overlapping with, the learner’s target trajectory.

Figure 10: Performance in the grid world of Figure 9.
Summary: Assumptions

- Multiple agents’ actions are noninteracting.
- The learner and mentor have “similar” capabilities:
 - Their state spaces are identical.
 - All actions the mentor can take are available to the learner.
 - All the mentor’s transition probabilities apply to the learner.
- The learner knows its own reward function.
- The learner can observe the mentor’s state transitions.
 - For convergence, the observation period is indefinite.
 - The mentor’s policy is stationary.

Summary: Results

Implicit imitation shows:

- improvement over standard learning (given an expert mentor)
- tolerance to noise (Figures 1 and 2)
- the ability to integrate subskills from multiple mentors (Figure 10)
- benefits that increase with problem difficulty (Figures 5 and 6)