An adaptive nearest neighbor rule for classification

Akshay Balsubramani, Stanford
Sanjoy Dasgupta, UCSD
Yoav Freund, UCSD
Shay Moran, Google AI Princeton
Main Idea: Modify k-NN Algorithm by Choosing k Adaptively for Each Query

- **Classical k-NN**: classify x by the majority vote of its k nearest in the training set.

x is the green point in the middle. The label assigned to x is determined by its k nearest neighbors (inside the big circle, in this example $k=13+12=25$)
Main Idea: Modify k-NN Algorithm by Choosing k Adaptively for Each Query

- **Adaptive k-NN:**
 - Iterate over the neighbors of x from nearest to furthest and query their labels.
 - If one of the label-classes obtains a significant majority then exit the loop and use this label to classify x.

Points x that are close to the boundary require querying a large number of neighbors.

Points x that are far from the boundary observe a significant advantage after querying a small number of neighbors.
Main Results

Theoretical Results

1. Adaptive k-NN rule is consistent (i.e. achieves Bayes optimality in the limit).

2. Instance-dependent generalization bounds
 - Number of examples required to classify x correctly depends on its “local-margin” (a formal notion introduced in the paper).
 - Points far from the boundary are correctly classified fast.

Practical Results

1. Adaptive k-NN rule is competitive with Classical k-NN with the best choice of k
 - Thus, this method circumvents the need to tune the meta-parameter k.