Homework 1, due Tuesday 10/3

1. Hashing the cube. You have a collection of nonzero distinct binary vectors, \(x_1, \ldots, x_m \in \{0, 1\}^n \). To facilitate later lookup, you decide to hash them down to vectors of length \(p < n \) by means of a linear mapping

\[x_i \mapsto Ax_i, \]

where \(A \) is a \(p \times n \) matrix with \(0-1 \) entries, and all computations are performed modulo 2. Suppose the entries of this matrix are picked uniformly at random (each an independent coin toss).

(a) Pick any \(1 \leq i \leq m \), and any \(b \in \{0, 1\}^p \). Show that the probability (over the choice of \(A \)) that \(x_i \) hashes to \(b \) is exactly \(1/2^p \). Hint: focus on a coordinate \(1 \leq j \leq n \) for which \(x_{ij} = 1 \).

(b) Pick any \(1 \leq i < j \leq m \). What is the probability that \(x_i \) and \(x_j \) hash to the same vector? This is called a collision.

(c) Show that if \(p \geq 2 \log_2 m \), then with probability at least 1/2, there are no collisions among the \(x_i \). Thus: to avoid collisions, it is enough to linearly hash into \(O(\log m) \) dimensions.

2. Almost-orthogonal points on the unit sphere. Fix any \(\epsilon > 0 \). We want to pick \(M \) points on the surface of the unit sphere \(S^{d-1} \) such that every pair of points \(x_i, x_j (i \neq j) \) is almost orthogonal: \(|x_i \cdot x_j| \leq \epsilon \). Show that it is possible to make \(M \) exponentially large in \(d \) (hint: pick the points randomly and use a bound from class). (Note: if we wanted the points to be perfectly orthogonal, then of course \(M \leq d \))

3. Norms. A norm on \(\mathbb{R}^d \) is a function \(\| \cdot \| : \mathbb{R}^d \to \mathbb{R} \) which satisfies the following properties:

 - Positivity: for any \(x \in \mathbb{R}^d \), \(\|x\| \geq 0 \), with equality iff \(x = 0 \).
 - Homogeneity: for any \(x \in \mathbb{R}^d \) and \(t \in \mathbb{R} \), \(\|tx\| = |t| \cdot \|x\| \).
 - Triangle inequality: for any \(x, y \in \mathbb{R}^d \), \(\|x + y\| \leq \|x\| + \|y\| \).

A useful family of norms are the \(l_p \) norms, defined as follows for \(p \geq 1 \):

\[\|x\|_p = \left(\sum_{i=1}^d |x_i|^p \right)^{1/p}. \]

These include the familiar \(l_1 \), \(l_2 \), and \(l_\infty \) norm (the latter is \(\max_i |x_i| \)). You may assume all of these satisfy the definition of norm.

(a) Show that for any \(x \in \mathbb{R}^d \),

\[\|x\|_2 \leq \|x\|_1 \leq \|x\|_2 \cdot \sqrt{d} \]

and give examples where each of these inequalities is tight. (You will need Cauchy-Schwarz.)

(b) Show that for any \(x \in \mathbb{R}^d \), and any \(p \geq 1 \), \(\|x\|_1 \geq \|x\|_p \).

(c) Show that for any \(x \in \mathbb{R}^d \), and any \(1 \leq p \leq q \), \(\|x\|_p \geq \|x\|_q \). That is, the \(l_p \) norm of a vector is always larger than its \(l_q \) norm if \(p \leq q \).

(d) Show that for any \(x \in \mathbb{R}^d \) and \(1 \leq p \leq q \),

\[\|x\|_p \leq \|x\|_q \cdot d^{(1/p) - (1/q)}. \]

You will need Holder’s inequality, which says that \(|x \cdot y| \leq \|x\|_a \|y\|_b \) for any vectors \(x, y \) and any \(a, b \geq 1 \) with \((1/a) + (1/b) = 1 \).

4. Suppose \(\| \cdot \| \) is some norm on \(\mathbb{R}^d \). Show that for any vectors \(v_1, \ldots, v_n \in \mathbb{R}^d \),

\[\sum_{\sigma \in \{+1, -1\}^n} \left\| \sum_{i=1}^n \sigma_i v_i \right\| \geq 2^n \max_i \|v_i\|. \]