
CSE 291: Geometric algorithms Spring 2013

Lecture 1 — Clustering in metric spaces

1.1 Why clustering?

A common use of clustering is to approximate a large/infinite/continuous set by a finite set of representatives.
This is the case, for instance, when vector quantization is used in audio processing. A speech signal is broken
down into (typically overlapping) windows, each representing 25 milliseconds, say. The continuous signal
within each 25 msec window is then quantized by replacing it by its nearest representative in a finite codebook
of 25 msec signals.

Before we can formalize clustering problems, we need to describe the kind of space in the which the data
are contained.

1.2 Metric spaces

There is an endless diversity of data out there, and their underlying spaces have all kinds of geometries.
There is no single umbrella notion of “distance” that captures all these possibilities. A reasonable starting
point, however, is the notion of metric space.

1.2.1 Definition and examples

Definition 1. A metric space (X , ρ) consists of a set X and a distance function ρ : X ×X → R that satisfies
the three properties of a metric:

1. Reflexivity: ρ(x, y) ≥ 0 with equality iff x = y

2. Symmetry: ρ(x, y) = ρ(y, x)

3. Triangle inequality: ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

Example 2. d-dimensional Euclidean space, (Rd, L2). Here the distance function is

ρ(x, y) = ‖x− y‖ =

√√√√ d∑
i=1

(xi − yi)2.

Example 3. (Rd, L1). The L1 metric is

ρ(x, y) = ‖x− y‖1 =

d∑
i=1

|xi − yi|.

Example 4. (Rd, L∞). The L∞ metric is

ρ(x, y) = ‖x− y‖∞ = max
i
|xi − yi|.

1-1

CSE 291 Lecture 1 — Clustering in metric spaces Spring 2013

Example 5. (M,ρ) where M is a Riemannian manifold and ρ is geodesic distance along the manifold.

Example 6. (V, ρ) where V are the vertices of an undirected graph with positive edge lengths, and ρ(x, y)
is the shortest path distance between x and y in the graph.

1.3 The k-center problem

Fix any metric space (X , ρ). The k-center problem asks: given a set S and an integer k, find the smallest
radius r such that S is contained within k balls of radius r.

k-center clustering

Input: Finite set S ⊂ X ; integer k.

Output: T ⊂ X with |T | = k.

Goal: Minimize cost(T) = maxx∈S ρ(x, T).

Here ρ(x, T) is the distance from point x to the closest point in set T , that is to say, infz∈T ρ(x, z).
In an L∞ space, this says: find the smallest r such that S can be covered by k boxes of side length 2r.

In an L2 space, it says: find the smallest r such that S can be covered by k spheres of radius r. And so on.

1.3.1 Farthest-first traversal

A basic fact about the k-center problem is that it is NP-hard. Thus there is no efficient algorithm that
always returns the right answer. But here’s a good algorithm due to González (1985) called farthest first
traversal.

pick any z ∈ S and set T = {z}
while |T | < k:

z = arg maxx∈S ρ(x, T)
T = T ∪ {z}

This builds a solution T one point at a time. It starts with any point, and then iteratively adds in the point
furthest from the ones chosen so far.

Farthest-first traversal takes time O(k|S|), which is fairly efficient. Its solution might not be perfect, but
is always close to optimal, in the following sense.

Claim 7. If T is the solution returned by farthest-first traversal, and T ∗ is the optimal solution, then

cost(T) ≤ 2cost(T ∗).

Proof. Let r = maxx∈S ρ(x, T) be the cost of T , and let x0 be the point at which this maximum is achieved.
Then T ∪ {x0} consists of k + 1 points which are all distance ≥ r apart. Two of these points must have the
same closest representative in T ∗ (since |T ∗| = k). So two points a distance ≥ r apart are assigned the same
representative in T ∗. This means cost(T ∗) ≥ r/2.

Interestingly, it is not possible to achieve a better approximation ratio for arbitrary metric spaces: even
getting a factor 2− ε (for any ε > 0) is NP-hard. A variety of hardness results, for k-center and the closely
related problem of max-diameter clustering, can be found in González (1985) and Feder and Greene (1988).

1-2

CSE 291 Lecture 1 — Clustering in metric spaces Spring 2013

1.3.2 Covering numbers

Fix any metric space (X , ρ). For any ε > 0, an ε-cover of a set S ⊂ X is defined to be any set T ⊂ X such
that

sup
x∈S

ρ(x, T) ≤ ε.

In words, an ε-cover of S is a (typically smaller) set of points T which constitute a good approximation
to S in the sense that any point in S can be replaced by a point in T that is at most ε away from it.

Example 8. Suppose the metric space is (Rd, L∞) and S = {−1, 1}d, the vertices of a d-dimensional
hypercube.

In this case, there is a 1-cover consisting of just a single point, the origin. However, for ε < 1, any ε-cover
T must contain 2d points. To see this, notice that T must have some point whose coordinates are all strictly
positive, to cover (1, 1, . . . , 1) ∈ S. Similarly, T must have a point whose coordinates are all strictly negative,
to cover (−1,−1, . . . ,−1) ∈ S. Continuing in this fashion, T must contain points that lie strictly within
every one of the 2d orthants. Therefore |T | ≥ 2d. Of course, T = S always works.

Example 9. Metric space (R2, L∞) and S = [−1, 1]2.
The simplest 1-cover is T = {(0, 0)}. The best (1/2)-cover consists of the four points T = {(±1/2,±1/2)}.

When ε = 1/2k, an ε-cover needs to cover the square [−1, 1]2 by smaller squares of side length 2ε; so a cover
of size 1/ε2 is necessary and sufficient.

Example 10. Metric space (Rd, L∞) and S = [−1, 1]d.
This is just like the previous example, except that now the hypercube [−1, 1]d is to be covered by smaller

hypercubes of side length 2ε. Therefore 1/εd of them are needed.

Example 11. Metric space (R2, L1) and S = [−1, 1]2.
The single point {(0, 0)} is a 2-cover of S. To get a 1-cover, we can use the four points {(0,±1), (±1, 0)}.

Notice that the characteristic shape of the L∞ metric is a box, while that of the L1 metric is a diamond;
that is to say, an ε-cover in L∞ is a cover by boxes of size proportional to ε while an ε-cover in L1 is a cover
by diamonds of size proportional to ε. Similarly, the characteristic shape of the L2 metric is the sphere.

1.3.3 Computing covering numbers

In a metric space (X , ρ), the ε-covering number of a set S ⊂ X is the size of its smallest ε-cover. Specifically,
define

N(S, ε) = min{|T | : T is an ε-cover of S}.

One way to approximate N(S, ε) is by farthest-first traversal:

pick any z ∈ S and set T = {z}
while maxx∈S ρ(x, T) > ε:

z = arg maxx∈S ρ(x, T)
T = T ∪ {z}

return |T|

By Claim 7, the returned value |T | is guaranteed to satisfy:

N(S, ε) ≤ |T | ≤ N(S, ε/2).

This is often not a very strong guarantee. For d-dimensional data, it is frequently the case that N(S, ε) ≈
(1/ε)d; in such situations, the approximate covering number could be off by a multiplicative factor of 2d.

1-3

CSE 291 Lecture 1 — Clustering in metric spaces Spring 2013

1.4 Problems

1. Max-diameter clustering. Here’s a problem that is very similar to k-center:

Input: A finite set of points S in some metric space, say (X , ρ); an integer k.

Output: A partition of S into k clusters.

Goal: Minimize the maximum diameter of the clusters. That is, the cost of a partition
S = C1 ∪ C2 ∪ · · · ∪ Ck is

max
j

max
x,x′∈Cj

ρ(x, x′).

Show that the farthest-first heuristic also gives a factor-2 approximation for this problem.

2. Another factor-2 approximation algorithm for max-diameter clustering. Here’s an alternative heuristic
for the max-diameter clustering problem, due to Hochbaum and Shmoys (1985). Given as input a
finite set of points S from a metric space, and an integer k:

• Guess the optimal diameter D

• T = ∅ (set of cluster centers)

• while S is not empty:

– Pick any x ∈ S and add it to T

– S = S \B(x,D)

(a) When this procedure terminates, the set T contains a subset of S such that every point in S lies
within distance D of S: in other words, this is a clustering with diameter at most 2D. Now, show
that if we guess the correct optimal diameter, then |T | ≤ k.

(b) Of course, we have no idea what the optimal diameter is, so we need to try all possible values.
At most how many possibilities do we need to investigate? What is the final running time of this
algorithm?

Bibliography

Feder, T. and Greene, D. (1988). Optimal algorithms for approximate clustering. In ACM Symposium on
Theory of Computing.

González, T. (1985). Clustering to minimize the maximum intercluster distance. Theoretical Computer
Science, 38:293–306.

Hochbaum, D. and Shmoys, D. (1985). A best possible heuristic for the k-center problem. Mathematics of
Operations Research, 10(2):180–184.

1-4

