Unsupervised Learning Through Prediction in a Model of Cortex

Santosh Vempala, Christos Papadimitriou

Robi Bhattacharjee
Outline:

1. Explain how PJOIN works
2. Discuss identifying patterns
3. Algorithm for identifying patterns
4. Proof
PJOIN

C = PJOIN(A,B)
PJOIN

\[C = \text{PJOIN}(A,B) \]

- C fires when A, B fire (not nec simultaneous)
PJOIN

C = PJOIN(A, B)

- C fires when A, B fire (not nec simultaneous)
- C can "predict" A, B
PJOIN
PJOIN

1. B fires
PJOIN

1. B fires

2. C predicts A
PJOIN

1. B fires

2. C predicts A
 a. fires to A
PJOIN

1. B fires

2. C predicts A
 a. fires to A
 b. state to P(A)
PJOIN

1. B fires

2. C predicts A
 a. fires to A
 b. state to P(A)

3. A fires
PJOIN

1. B *fires*

2. C predicts A
 a. *fires* to A
 b. state to P(A)

3. A *fires*

4. C *fires*
PJOIN
PJOIN

1. C is predicted
PJOIN

1. C is predicted

2. C predicts A, B
PJOIN

1. C is predicted
2. C predicts A, B
3. B fires
PJOIN

1. C is predicted
2. C predicts A, B
3. B fires
4. A fires
PJOIN

1. C is predicted
2. C predicts A, B
3. B fires
4. A fires
5. C fires
Cascade Example
Patterns
Patterns

A pattern is an $x_1x_2x_3 \ldots x_n \in \{0, 1\}^n$
Patterns

A pattern is an \(x_1 x_2 x_3 \ldots x_n \in \{0, 1\}^n \)

Each \(x_i \) is stored in a sensory item \(S_1 \)
Patterns

A pattern is an $x_1x_2x_3\ldots x_n \in \{0, 1\}^n$

Each x_i is stored in a sensory item S_i
Patterns

A pattern is an \(x_1 x_2 x_3 \ldots x_n \in \{0, 1\}^n \)

Each \(x_i \) is stored in a sensory item \(S_1 \)

\(S_i \) expresses its state through items \(0_i, 1_i \)

\[S_1 \quad S_2 \quad S_3 \quad \ldots \quad S_n \]
Patterns

A pattern is an $x_1x_2x_3 \ldots x_n \in \{0, 1\}^n$

Each x_i is stored in a sensory item S_i

S_i expresses its state through items $0_i, 1_i$
Sensory Item Details
1. S_1 fires to
 • 0_1 if state = 0
 • 1_1 if state = 1
Sensory Item Details

1. S_1 fires to
 - 0₁ if state = 0
 - 1₁ if state = 1
1. \(S_1 \) fires to
 - 0, if state = 0
 - 1, if state = 1
 - 0 or 1 fires
1. S_1 fires to
 - 0_1 if state = 0
 - 1_1 if state = 1
 - 0_1 or 1_1 fires
Sensory Item Details

1. S_1 fires to
 - 0_1 if state = 0
 - 1_1 if state = 1
 - 0_1 or 1_1 fires

2. 0_1 or 1_1 predicts
Sensory Item Details

1. S_1 fires to
 - 0_1 if state = 0
 - 1_1 if state = 1
 - 0_1 or 1_1 fires

2. 0_1 or 1_1 predicts
Sensory Item Details

1. S_1 fires to
 - 0_1 if state = 0
 - 1_1 if state = 1
 - 0_1 or 1_1 fires

2. 0_1 or 1_1 predicts
 - S_1 fires
Sensory Item Details

1. S_1 fires to
 - 0_1 if state = 0
 - 1_1 if state = 1
 - 0_1 or 1_1 fires

2. 0_1 or 1_1 predicts
 - S_1 fires
Sensory Item Details

1. S_1 fires to
 - 0_1 if state = 0
 - 1_1 if state = 1
 - 0_1 or 1_1 fires

2. 0_1 or 1_1 predicts
 - S_1 fires
Intuition about Patterns

Key: items in pattern do not fire simultaneously
Intuition about Patterns

Key: items in pattern do not fire simultaneously
Intuition about Patterns

Key: items in pattern do not fire simultaneously
Intuition about Patterns

Key: items in pattern do not fire simultaneously
Intuition about Patterns

Key: items in pattern do not fire simultaneously
Intuition about Patterns

Key: items in pattern do not fire simultaneously
Intuition about Patterns

Key: items in pattern do not fire simultaneously
Intuition about Patterns

Key: items in pattern do not fire simultaneously

Goal: item I_p fires w.h.p if p is stored in S_i
Intuition about Patterns

Key: items in pattern do not fire simultaneously

Goal: item I_p fires w.h.p if p is stored in S_i

I_p is the PJOIN of the appropriate $0/1_i$

0_1 1_1 0_2 1_2 0_3 1_3 ... 0_n 1_n

S_1 S_2 S_3 ... S_n
Presenting a Pattern
Presenting a Pattern

1. Each sensory item S_i is appropriately set
Presenting a Pattern

1. Each sensory item S_i is appropriately set.

2. For T steps, S_i fire independently with probability p.
Presenting a Pattern

1. Each sensory item S_i is appropriately set

2. For T steps, S_i fire independently with probability p
 a. Each S_i fires at most once
Presenting a Pattern

1. Each sensory item S_i is appropriately set

2. For T steps, S_i fire independently with probability p
 a. Each S_i fires at most once
 b. Including in response to prediction from $0/1_i$
Algorithm Specifications
Algorithm Specifications

Input: m patterns that are presented in an arbitrary order
Algorithm Specifications

Input: m patterns that are presented in an arbitrary order

Output: m items $I_1, I_2, ..., I_m$
Algorithm Specifications

Input: m patterns that are presented in an arbitrary order

Output: m items I_1, I_2, \ldots, I_m
 - Each I_i uniquely represents the appropriate pattern
Algorithm Specifications

Input: \(m \) patterns that are presented in an arbitrary order

Output: \(m \) items \(I_1, I_2, \ldots, I_m \)
- Each \(I_i \) uniquely represents the appropriate pattern
- After a bounded point, no more items are created
The Algorithm
The Algorithm

Item Eligibility:
The Algorithm

Item Eligibility:

- An item becomes eligible D steps after it fires
The Algorithm

Item Eligibility:
- An item becomes eligible D steps after it fires
- Unless any of its parents have fired in that time
The Algorithm

Item Eligibility:
- An item becomes eligible D steps after it fires
- Unless any of its parents have fired in that time

Repeat Ad Nauseum:
The Algorithm

Item Eligibility:
- An item becomes eligible D steps after it fires
- Unless any of its parents have fired in that time

Repeat Ad Nauseum:
- Randomly (probability q) PJOIN eligible items
The Algorithm

Item Eligibility:
- An item becomes eligible D steps after it fires
- Unless any of its parents have fired in that time

Repeat Ad Nauseum:
- Randomly (probability q) PJOIN eligible items
- Items immediately fire upon creation
Example

\begin{align*}
S_1 & \quad 0_1 \quad 1_1 \\
S_2 & \quad 0_2 \quad 1_2 \\
S_3 & \quad 0_3 \quad 1_3
\end{align*}
Example

\[S_1 \]

\[0_1 \quad 1_1 \]

\[S_2 \]

\[0_2 \quad 1_2 \]

\[S_3 \]

\[0_3 \quad 1_3 \]
Example

\[0_1 \xrightarrow{\text{S}_1} 1_1 \]
\[0_2 \xrightarrow{\text{S}_2} 1_2 \]
\[0_3 \xrightarrow{\text{S}_3} 1_3 \]
Example
Example

A

\(0_1 \rightarrow S_1\)

\(1_1 \rightarrow S_1\)

\(0_2 \rightarrow S_2\)

\(1_2 \rightarrow S_2\)

\(0_3 \rightarrow S_3\)

\(1_3 \rightarrow S_3\)
Example
Example
Example

A

I

S_1

S_2

S_3

0_1 1_1

0_2 1_2

0_3 1_3
Example

\[
\begin{align*}
 &I \\
 &\quad \downarrow \quad \downarrow \\
 &A \\
 &\quad \downarrow \\
 &S_1 \\
 &\quad \downarrow \\
 &S_2 \\
 &\quad \downarrow \\
 &S_3
\end{align*}
\]

0_1 \quad 1_1 \\
0_2 \quad 1_2 \\
0_3 \quad 1_3
Example

I

A

0₁ 1₁
S₁

0₂ 1₂
S₂

0₃ 1₃
S₃
Example
Example
Example
Example

Diagram of a computational process with nodes labeled as follows:

- I
- A
- S₁
- S₂
- S₃

The nodes are connected by arrows indicating the flow of information or operations.
Example
Example
Example
Example
Example
Theorem
Theorem

If
Theorem

If \[T \geq 4 \log n + 2 \log n/p \]
Theorem

If \(T \geq 4 \log n + 2 \log n/p \) \quad D = O(l)
Theorem

If \[T \geq 4 \log n + 2 \log n/p \quad D = O(l) \]

1. An item will be successfully made for each pattern
Theorem

If \[T \geq 4 \log n + 2 \log n/p \quad D = O(l) \]

1. An item will be successfully made for each pattern

2. No more items will be made after each pattern is presented \(O(\log m + \log n) \) times
Proof (Sketch)
Proof (Sketch)

- In $2 \log n/p$ steps, w.h.p, every S_i fires
Proof (Sketch)

- In $2 \log n/p$ steps, w.h.p, every S_i fires
- W.h.p, the height of a random tree is $O(\log n)$
Proof (Sketch)

- In $2 \log n / p$ steps, w.h.p, every S_i fires.
- W.h.p, the height of a random tree is $O(\log n)$
- $T \geq 4 \log n + 2 \log n / p$ allows the tree to be formed.
Proof (Sketch)
Proof (Sketch)

- Fix p
Proof (Sketch)

- Fix p

- Item X is said to have a good parent Y if
Proof (Sketch)

- Fix p

- Item X is said to have a good parent Y if
 - X fires w.h.p when p is presented
Proof (Sketch)

- Fix p

- Item X is said to have a good parent Y if
 - X fires w.h.p when p is presented
 - Y fires when p is presented
Proof (Sketch)

- Fix p

- Item X is said to have a good parent Y if
 - X fires w.h.p when p is presented
 - Y fires when p is presented
 - Y prevents X from being eligible during p
Proof (Sketch)

- Fix p

- Item X is said to have a good parent Y if
 - X fires w.h.p when p is presented
 - Y fires when p is presented
 - Y prevents X from being eligible during p

- Given enough time, any item gets a good parent
Proof (Sketch)

- Fix p

- Item X is said to have a good parent Y if
 - X fires w.h.p when p is presented
 - Y fires when p is presented
 - Y prevents X from being eligible during p

- Given enough time, any item gets a good parent

- Danger = new items
Proof (Sketch)
Proof (Sketch)

- If new items come from PJOINs during p, no problem
Proof (Sketch)

- If new items come from PJOINs during \(p \), no problem

- New items come from PJOINs during \(q \) that also fire on \(p \)
Proof (Sketch)

- If new items come from PJOINs during p, no problem

- New items come from PJOINs during q that also fire on p

- Key: in order for the new item to fire during p, it must be a PJOIN of items that fire in both p and q
Proof (Sketch)
Proof (Sketch)

- At most \(n \) items at base in \(pq \)
Proof (Sketch)

● At most \(n \) items at base in \(pq \)

● \(O(n) \) items total in \(pq \)
Proof (Sketch)

- At most n items at base in pq
- $O(n)$ items total in pq
- $O(mn)$ total new items added into p
Proof (Sketch)

- At most n items at base in pq
- $O(n)$ items total in pq
- $O(mn)$ total new items added into p
- Done in $O(\log mn)$ presentations
Sketchiness
Sketchiness

- Good parents hinge on D
Sketchiness

- Good parents hinge on D

- Falls apart if item gets joined with someone at vastly different level
Sketchiness

- Good parents hinge on D
- Falls apart if item gets joined with someone at vastly different level
- Argue that this doesn’t happen often
Sketchiness

- Good parents hinge on D
- Falls apart if item gets joined with someone at vastly different level
- Argue that this doesn’t happen often
 - They do not address this at all
Sketchiness

- Good parents hinge on D
- Falls apart if item gets joined with someone at vastly different level
- Argue that this doesn’t happen often
 - They do not address this at all
 - Left as exercise to reader?
Sketchiness

● Good parents hinge on D

● Falls apart if item gets joined with someone at vastly different level

● Argue that this doesn’t happen often
 ○ They do not address this at all
 ○ Left as exercise to reader?

● Proof by programming
Vicinal?
Vicinal?

- PJJOIN operation can be done vicinally
Vicinal?

- PJOIN operation can be done vicinally
 - If you believe in JOIN, you can believe in PJOIN
Vicinal?

- PJOIN operation can be done vicinally
 - If you believe in JOIN, you can believe in PJOIN

- Algorithm can be done vicinally
Vicinal?

- PJOIN operation can be done vicinally
 - If you believe in JOIN, you can believe in PJOIN

- Algorithm can be done vicinally
 - They took this to be fairly obvious