The Self-Organizing Map

Jenny Hamer

University of California, San Diego

Paper by Teuvo Kohonen, IEEE 1990

November 8, 2018
Overview

1. Competitive learning

2. Learning vector quantization (LVQ) methods
 - Unsupervised vector quantization
 - Supervised LVQ

3. Topological neighborhood

4. Self-organizing map algorithm

5. Applications and results
Let \(\mathbf{x} \in \mathbb{R}^n \) be an input vector. Let \(d(\mathbf{a}, \mathbf{b}) \) be a similarity metric between two vectorial inputs, for example the Euclidean distance between \(\mathbf{a}, \mathbf{b} \).

1. Initialize a set of “reference” vectors \(M = \{ \mathbf{m}_i \mid \mathbf{m}_i \in \mathbb{R}^n, i = 1, \ldots, k \} \) (e.g. randomly)

2. Simultaneously compare \(\mathbf{x} \) with each \(\mathbf{m}_i \); compute the similarity between \(\mathbf{x}, \mathbf{m}_i \): \(d(\mathbf{x}, \mathbf{m}_i) \)

3. The best-matching \(\mathbf{m}_i \) is declared the “winner”; let \(\mathbf{m}_c \) be this reference vector

4. Tune \(\mathbf{m}_c \) such that \(d(\mathbf{x}, \mathbf{m}_c) \) decreases while all other \(\mathbf{m}_i \) are kept unchanged.

Supposing that the \(\mathbf{x} \) follow some distribution with probability density function \(p \), then the tuned \(\mathbf{m}_i \) form an approximation of \(p \).
The unit \(u_j \) in the layer \(F_2 \) is the "winner" for input pattern \(I \): input \(I \)'s cluster is determined by this unit.
Unsupervised Vector Quantization: k-means

Goal: learn a finite, discrete approximation M of continuous probability density function of vectorial data $X = \{x \mid x \in \mathbb{R}^n\}$.

As in competitive learning, randomly initialize the codebook M.

For each input vector x:

1. Assign x to the cluster of its “winner” m_c satisfying $\min_i \{||x - m_i||\}$ (in general, w.r.t. L^p norm: we’ll use $p = 2$ or Euclidean distance)

2. Tune the codebook vectors:

 $m_c(t + 1) = m_c(t) + \alpha(t)[x(t) - m_c(t)]$ where m_c was a “winner”

 $m_i(t + 1) = m_i(t)$ for all $i \neq c$

Originally used in signal processing and approximation:

- often more economical to use a batched method: match and assign numerous $x(t)$, then update in a single step.
Supervised LVQ

Suppose some set of the input data \mathbf{x} have known class labels: assign several $\mathbf{m}_i \in M$ as representatives for each class (e.g. randomly). The \mathbf{m}_i closest to \mathbf{x} determines \mathbf{x}’s class.

1. Assign class of \mathbf{m}_c to \mathbf{x}
2. Update the \mathbf{m}_i as follows:

If \mathbf{x} is correctly classified:

$$\mathbf{m}_c(t + 1) = \mathbf{m}_c(t) + \alpha(t)[\mathbf{x} - \mathbf{m}_c(t)]$$

If \mathbf{x} is incorrectly classified:

$$\mathbf{m}_c(t + 1) = \mathbf{m}_c(t) - \alpha(t)[\mathbf{x} - \mathbf{m}_c(t)]$$

leaving all weights $i \neq c$ unchanged: $\mathbf{m}_i(t + 1) = \mathbf{m}_i(t)$

Here $\alpha(t)$, $0 < \alpha(t) < 1$, is a scalar gain which should decrease monotonically over time.
Goal: partition the cells of the map such that each responds to a discrete set of features of the data. Like competitive learning, but with *neighborhood-dependent* updates of cells in N_c to learn a spatial ordering.

![Diagram of topological neighborhood](image)

Fig. 2. Examples of topological neighborhood $N_c(t)$, where $t_1 < t_2 < t_3$.

This algorithm allows for high-dimensional data to be visualized in lower dimensional (often 2D) space.
SOM architecture

- Network: (most commonly) $n \times m$ cells positioned on a grid or lattice, where each cell $\boldsymbol{m}_i \in \mathbb{R}^n$ (the red nodes)

- $\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3$ are the input vectors or patterns $\in \mathbb{R}^n$ (the yellow nodes)

- Each input \boldsymbol{x}_i is “connected” to every \boldsymbol{m}_i in the network (so that each \boldsymbol{x}_i can be compared with all \boldsymbol{m}_i)

Figure: An example of a 3×3 network

(Snapshot from https://youtu.be/-Euwc9fWBJw)
SOM Learning algorithm

Forming the topological order of the map: begin with a large N_c, roughly $1/2$ number of neurons in network.

Iteratively:

1. Find cell c s.t. $||x - m_c|| = \min_i \{||x - m_i||\}$
2. Update the m_i:

If cell $i \in N_c(t)$

$$m_i(t+1) = m_i(t) + \alpha(t)[x(t) - m_i(t)]$$

The adaption gain scalar α, $0 < \alpha < 1$ is often replaced with a scalar “kernel function” $h_{ci}(t)$, most commonly a Gaussian neighborhood:

$$h_{ci}(t) = h_0(t) \exp(-||r_i - r_c||^2/\sigma(t)^2)$$

where $h_0(t), \sigma(t)$ decrease over time, and r_i, r_c denote cells c and i.
Simple demonstration with colors

Using 15 samples of RGB values, this 20×30 cell network learns a classification of the colors.
Simple demonstration with colors

Using 15 samples of RGB values, this 20×30 cell network learns a classification of the colors.
Simple demonstration with colors

Using 15 samples of RGB values, this 20×30 cell network learns a classification of the colors.
Simple demonstration with colors

Using 15 samples of RGB values, this 20×30 cell network learns a classification of the colors.
Simple demonstration with colors

Using 15 samples of RGB values, this 20×30 cell network learns a classification of the colors.
Effect of decrease in network size

Alternative clustering of the same 15 RGB vectors with a 10×15 network:
Effect of decrease in network size

Alternative clustering of the same 15 RGB vectors with a 10×15 network:
Effect of decrease in network size

Alternative clustering of the same 15 RGB vectors with a 10×15 network:
Effect of decrease in network size

Alternative clustering of the same 15 RGB vectors with a 10×15 network:
Effect of decrease in network size

Alternative clustering of the same 15 RGB vectors with a 10×15 network:
Effect of decrease in network size

Now, with a 50×60 network:
Effect of decrease in network size

Now, with a 50×60 network:
Effect of decrease in network size

Now, with a 50×60 network:
Effect of decrease in network size

Now, with a 50×60 network:
Effect of decrease in network size

Now, with a 50×60 network:
Practical tips in applications

- **Initialization of** $m_i(0)$:
 - May be arbitrarily or randomly chosen
 - Only restriction is that they are distinct

- **Number of iterations**:
 - “Rule of thumb”: $500 \times$ number of network cells

- **Learning rate**: α
 - Use a high learning rate (close to 1) for the first 1000 iterations, then monotonically decrease α during fine-tuning

- **Neighborhood size**: N_c
 - If N_c too small \rightarrow map will not learn global ordering
 - If N_c too large \rightarrow map will be very coarse-grained in clustering
 - Choose are generous N_c at start of training:
 - $N_c(0)$ can be > than half the size of the network;
 - Reduce the size during training

Note that the updates to each cell’s weights tend to smooth out over learning and **weight vectors tend to become ordered in value along the axes of the network.**
Theory behind the SOM

- Extremely difficult to capture the dynamics of the SOM in mathematical theorems and analyses

- Many strict analyses have been attempted under simplifying constraints, though these are beyond the scope of this paper
 - Cottrell and Fort (1987) have proven that the SOM will converge to a globally ordered state in some constrained low-dimensional cases
 - Ritter, Martinez, and Schulten (1992) have shown that under the assumption the \mathbf{x} are discrete-valued, local order can be achieve for more general dimensionalities of the vectors

- Several meaningful applications have been simulated using the SOM to demonstrate its utility and efficacy
Building a “phonetic typewriter” to identify and recognize phonemes: represent continuous Finnish speech as spectral vectors, \mathbf{x}

- $\mathbf{x} \in \mathbb{R}^{15}$ spectral vectors computed every 9.83ms using 256-pt FFT

- No segmentation of speech and fully unsupervised: naturally occurring features contributed to self-organization

Figure: 8 × 12 Finnish phoneme map

The 21 phonemes of Finnish have been learned: most cells respond to a unique phoneme, but some cells do to two.
Application: Semantic mapping

Goal: extract abstract logically similar, semantic information from symbolic data.

- Meaning of a symbolic encoding requires consideration of the conditional probabilities of its occurrences (contexts) with other encodings.

- Represent symbolic encoding as a vector x_s of symbols and their context x_c:

$$x = \begin{bmatrix} x_s \\ x_c \end{bmatrix} = \begin{bmatrix} x_s \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ x_c \end{bmatrix}$$

Figure: Vocabulary used in experiment
Semantic meaning should be inferred only from context in which words occur: Each word encoded as a random, 7-dim. unit vector.
Application: semantic maps

Presented 2,000 word-context-pairs derived from 10,000 random sentences

Figure: 15×10-cell learned semantic map

![Semantic Map Diagram]
Concluding remarks

- The SOM is a powerful neural-model capable of creating localized, structured, clustered representations of input data.

- On its own, the SOM is not well suited for classification tasks unless fine-tuning methods are used to increase decision accuracy.

- Initialization of the map affects the locality of its learned responses and ordering.

- Particularly useful for high-dimensional data: reduces dimensionality of the data and the topological mapping allows underlying properties of data to be visualized.
References

Tuevo Kohonen
The Self-Organizing Map

Tuevo Kohonen
Essentials of the self-organizing map
Any questions?

1. Competitive learning

2. Learning vector quantization (LVQ) methods
 - Unsupervised vector quantization
 - Supervised LVQ

3. Topological neighborhood

4. Self-organizing map algorithm

5. Applications and results