The “Independent Components” of Natural Scenes are Edge Filters

Anthony J. Bell and Terrence J. Sejnowski

Motivation

• Neurons with line and edge selectivities found in primary visual cortex of cats and monkeys
• Edges are suspicious coincidences in an image
• Unsupervised learning algorithm \(\rightarrow\) find a factorial code of independent visual features

This paper:
• Non-linear infomax network \(\rightarrow\) sets of visual filters \(\rightarrow\) localized and oriented
• Independent filters
• Resembles the receptive fields of simple cells in visual cortex
How filtering works?

First filter

Second filter

*https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Blind Source Separation

Cocktail Party Problem

$s \in \mathbb{R}^M$ speakers
$A \in \mathbb{R}^{N \times M}$ mixing matrix
$x \in \mathbb{R}^N$ observations
$W \in \mathbb{R}^{M \times N}$ demixing matrix
$u \in \mathbb{R}^M$ recovered sources

Can we recover s?

N speakers M microphones $x = As$ $u = Wx$
Blind separation

Linear image synthesis model: \(x = As \)

If \(A \) was known \(\rightarrow s = A^{-1}x \)

Recovering: \(u = Wx \)
\(W = A^{-1} \)

Blind Separation

Goal: We want \(u_1, u_2, \ldots, u_m \) to be independent.

An easier solution: Uncorrelated \(u_1, u_2, \ldots, u_m \) \(\rightarrow \) Whitening

Definition: \(W \) is decorrelating matrix if \(u_1, u_2, \ldots, u_m \) are uncorrelated \(\rightarrow \) \(E[uu^T] \) is diagonal

\(E[uu^T] = WE[xx^T]W^T \rightarrow \text{TWO MANY CHOICES of } W \)

Special Case: \(E[uu^T] = I \rightarrow W^TW = E[xx^T]^{-1} = C^{-1} \)

Covariance Matrix: \(C = E[xx^T] \)
Baseline Models

Principal Component Analysis (PCA) Solution

- Eigenvalue decomposition of $C \rightarrow \text{ED}_E^{-1} \rightarrow$ columns of E are the eigenvectors
- Choose $W = D^{-1/2}E^T$
- Filters are orthogonal $\rightarrow WW^T = D^{-1}$ scaling matrix

ZCA Solution

- $W^T = W \rightarrow C^{1/2}$
- not orthogonal filters \rightarrow symmetric filters
- similar to how the biological eye (the retina) processes images

Both PCA and ZCA are based on second order statistics.

$C = E\{xx^T\}$ gets us **uncorrelated outputs** but is not enough to determine **independence**!
ICA - Preliminaries

Independence: \(f_\mathbf{u}(\mathbf{u}) = \prod_i f_{u_i}(u_i) \)

Mutual Information: always non-negative \(\Rightarrow \) zero iff the variables are statistically independent.

\[
I(u_1, u_2, ..., u_m) = \sum_{i=1}^{m} H(u_i) - H(\mathbf{u})
\]

The Infomax Principle
Maximizing the output entropy (or information flow) of a network with non-linear outputs.

\[
L = H(\sigma(u_1), \sigma(u_2), ..., \sigma(u_m))
\]

\(\sigma(u_i) \): output

\(\sigma \): non-linear scalar functions

Architecture

We are trying to maximize the joint entropy of \(y_i \)'s.

Sigmoid function

\[
\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}
\]
ICA - Preliminaries

Theorem: ICA can be performed exactly, by finding the maximum, with respect to \(W \), of the joint entropy, \(H(y) \), of an output vector, \(y \), which is the vector \(u \), except that each element is transformed by a sigmoidal function which is a Cumulative Distribution Function (CDF) of sources which we are looking for. In this case ‘infomax’ is equivalent to minimization of the mutual information between \(u_i \).*

\[
y^T = [y_1, y_2, \ldots, y_m] = [\sigma(u_1), \sigma(u_2), \ldots, \sigma(u_m)] = \sigma(u^T) = \sigma \left((Wx)^T \right)
\]

Relationship of probability density functions (PDF): \(f_y(y) = \frac{f_x(x)}{|J|} \) \(J = \det \left[\frac{\partial y_i}{\partial x_j} \right] \)

Our cost function: \(H(y) = -E \left[\ln \left(f_y(y) \right) \right] = E \left[\ln (|J|) + H(x) \right] \) \(H(x) \) is constant.

The Algorithm for ICA

Goal: Finding \(W \in \mathbb{R}^{M \times N} \) s.t. \(u = Wx \) has independent components

Data: 17595 12x12 sample in the training set created from 4 natural scene

Preprocessing: \(x \leftarrow 2W_z (x - \bar{x}) \)
\(\rightarrow \) removes first and second order statistics
The Algorithm for ICA

Input: $x^{(1)}, x^{(2)}, \ldots, x^{(k)} \in \mathbb{R}^N$

Cost function: Joint Entropy of the outputs y: $H(y) = H(\sigma(u))$

- Initialization: $W = I$
- After 30 sweeps through the data shuffling
- Batch size of 50 patches
- Do stochastic gradient ascent to increase the cost function

 - Entropy gradient:

 $$
 \Delta W \propto \frac{\partial H(y)}{\partial W} = E \left[\frac{\partial \ln |J|}{\partial W} \right] \quad \text{where } J = \det \left[\frac{\partial y_i}{\partial x_j} \right]_{ij}
 $$

The Algorithm for ICA

- In stochastic gradient ascent, $E[\cdot]$ is removed
 - Evaluating derivative

 $$
 \Delta W \propto [W^T]^{-1} + \hat{y}x^T
 $$

 where $\hat{y}_i = \frac{\partial}{\partial u_i} \ln \frac{\partial y_i}{\partial u_i}$

- Use of natural gradient for fast convergence and avoiding of matrix inverse:
 - Multiply with $W^T W$

 $$
 \Delta W \propto \frac{\partial H(y)}{\partial W} W^T W = (I + \hat{y}u^T)W
 \quad \Delta w_{ij} \propto w_{ij} + \hat{y}_i \sum_k w_{kj} u_k
 $$
Results

PCA: Basis functions and filters are the same
ZCA: First 6 are filters, last 6 are the basis functions \rightarrow columns of W^{-1}
W: ICA filters learned on whitened data
ICA: ICA filters $W_{i} = W_{2} W_{i}$
A: Basis functions of ICA filters \rightarrow Columns of W_{i}^{-1} \rightarrow Only stimulate their corresponding filter

Filters as rows of matrix W
- 1 DC filter
- 106 oriented filters
 - 35 diagonal
 - 37 vertical
 - 34 horizontal
- 37 localized checkerboard patterns
Summary

Problem: Learning linear filters based on natural images

Results:
- Localised edge detectors
- Algorithm is sensitive to higher-order statistics
- Whitening \rightarrow second-order statistics are not enough
- Remaining information \rightarrow higher-order statistics
- ICA takes higher order statistics into account
- For further levels of invariance (shifting, rotating, scaling, lighting) \rightarrow multi-layer non-linear networks