Compressed Sensing

David Donoho (2006)
Dept. of Statistics
Stanford University

Presented by Alankrita Bhatt
CSE 254A
October 25, 2018
Problem Statement

- Interested in measuring a signal $x \in \mathbb{R}^m$
 - Could be a physical quantity of interest
 - Can we reconstruct with less than m measurements?
Problem Statement

- Interested in measuring a signal $x \in \mathbb{R}^m$
 - Could be a physical quantity of interest
 - Can we reconstruct with less than m measurements?
 - In general, obviously not.

$||x||_p \leq R$ for some $p \in (0, 2)$ and $R > 0$

Can we then do better than m measurements?
Problem Statement

- Interested in measuring a signal $x \in \mathbb{R}^m$
 - Could be a physical quantity of interest
 - Can we reconstruct with less than m measurements?
 - In general, obviously not.

- What if the signal is sparse?

$$\|x\|_p = \left(\sum_{i=1}^{m} |x_i|^p \right)^{\frac{1}{p}} \leq R$$

for some $p \in (0, 2)$ and $R > 0$
Problem Statement

- Interested in measuring a signal $x \in \mathbb{R}^m$
 - Could be a physical quantity of interest
 - Can we reconstruct with less than m measurements?
 - In general, obviously not.

- What if the signal is sparse?
 \[||x||_p = \left(\sum_{i=1}^{m} |x_i|^p \right)^{\frac{1}{p}} \leq R \]
 for some $p \in (0, 2)$ and $R > 0$

- Can we then do better than m measurements?
Recovering Sparse x

- $X_{p,m}(R)$ is the class of signals of interest

\[X_{p,m}(R) = \{ x : ||x||_p \leq R \} \]
Recovering Sparse x

$X_{p,m}(R)$ is the class of signals of interest

$$X_{p,m}(R) = \{ x : \|x\|_p \leq R \}$$

Punchline: If Φ is a $n \times m$ random matrix (here $n << m$), we can recover x from Φx
Recovering Sparse x

- $X_{p,m}(R)$ is the class of signals of interest

$$X_{p,m}(R) = \{x : \|x\|_p \leq R\}$$

- **Punchline**: If Φ is a $n \times m$ random matrix (here $n << m$), we can recover x from Φx

Theorem 1.7 of [Donoho2006]

∃ a reconstruction operator A_n running in polynomial time such that for matrices Φ satisfying certain properties and a constant C_p, we have the minmax error

$$E_n(X_{m,p}(R)) := \inf_{A_n} \sup_{x \in X_{m,p}(R)} \|x - A_n(\Phi x)\|_2 \leq C_p \cdot R \cdot (n/\log m)^{1/2 - 1/p}$$
Recovering Sparse x

- $X_{p,m}(R)$ is the class of signals of interest

$$X_{p,m}(R) = \{ x : ||x||_p \leq R \}$$

- **Punchline:** If Φ is a $n \times m$ random matrix (here $n \ll m$), we can recover x from Φx

Theorem 1.7 of [Donoho2006]

There exists a reconstruction operator A_n running in polynomial time such that for matrices Φ satisfying certain properties and a constant C_p, we have the minmax error

$$E_n(X_{m,p}(R)) := \inf_{A_n} \sup_{x \in X_{m,p}(R)} ||x - A_n(\Phi x)||_2 \leq C_p \cdot R \cdot (n/\log m)^{1/2-1/p}$$

- If x_N denotes the vector with everything except N largest components set to 0 then

$$||x - x_N||_2 \leq \zeta_{2,p} \cdot ||x||_p \cdot (N + 1)^{1/2-1/p}$$
Recovering Sparse x

- $X_{p,m}(R)$ is the **class of signals** of interest

$$X_{p,m}(R) = \{ x : ||x||_p \leq R \}$$

- If Φ is a $n \times m$ random matrix, we can still recover x from Φx

Theorem 1 of [Donoho2006]

\exists a (possibly nonlinear) reconstruction operator A_n running in **polynomial time** such that for matrices Φ satisfying certain properties and a constant C_p, we have the minmax error

$$E_n(X_{m,p}(R)) := \inf_{A_n} \sup_{x \in X_{m,p}(R)} ||x - A_n(\Phi x)||_2 \leq C_p \cdot R \cdot \left(\frac{n}{\log m} \right)^{1/2 - 1/p}$$

- If x_N denotes the vector with everything except N largest components set to 0 then

$$||x - x_N||_2 \leq \zeta_{2,p} \cdot ||x||_p \cdot (N + 1)^{1/2 - 1/p}$$
Recovering Sparse x

- $X_{p,m}(R)$ is the class of signals of interest

$$X_{p,m}(R) = \{x : \|x\|_p \leq R\}$$

- If Φ is a $n \times m$ random matrix, we can still recover x from Φx

Theorem 1 of [Donoho2006]

\[E_n(X_{m,p}(R)) := \inf_{A_n} \sup_{x \in X_{m,p}(R)} \|x - A_n(\Phi x)\|_2 \leq C_p \cdot R \cdot (n/\log m)^{1/2-1/p} \]

- If x_N denotes the vector with everything except N largest components set to 0 then

$$\|x - x_N\|_2 \leq \zeta_{2,p} \cdot \|x\|_p \cdot (N+1)^{1/2-1/p}$$

- Taking $\approx N \log(m)$ pieces of nonadaptive information comparable to this

- Matching information-theoretic lower bound shows that the $(n/\log m)^{1/2-1/p}$ scaling is optimal
Recovering sparse x

A quick illustration

- Let x be such that $\|x\|_0 \leq k$

- Then asking an oracle to give us the k largest coefficients of x recovers it exactly
Recovering sparse x

A quick illustration

- Let x be such that $\|x\|_0 \leq k$

- Then asking an oracle to give us the k largest coefficients of x recovers it exactly

- As per the result above, $\approx k \log m$ measurements given by Φx can also exactly recover x!
Recovering sparse x

A quick illustration

- Let x be such that $||x||_0 \leq k$

- Then asking an oracle to give us the k largest coefficients of x recovers it exactly

- As per the result above, $\approx k \log m$ measurements given by Φx can also exactly recover x!

Two main questions:

- What are the special properties of this matrix Φ?

- What are the polynomial time methods to recover x from Φx?
Part I: Sampling operators Φ
Constructing optimal sampling operators

- Consider a matrix Φ the following three “good” properties

1. **CS–1**: Minimal singular value of submatrices (with $\rho n / \log(m)$ columns) is $\eta > 0$ — Quantifies linear independence

2. **CS–2**: For any $v \in$ the subspace spanned by each submatrix (with $\rho n / \log(m)$ columns), we have $\|v\|_2 \leq c \sqrt{n} \|v\|_1$ — Note that we always have $\sqrt{n} \|v\|_1 \leq \|v\|_2$.

3. **CS–3**: (A technical condition on the quotient norm)

Theorem 7 of [Donoho2006]

For a Φ satisfying CS–1-3 and a constant C,

$$\inf_{A_n} \sup_{x \in X^m, p \in \mathbb{R}} \left\| x - A_n(\Phi x) \right\|_2 \leq C \left(\frac{n}{\log m} \right)^{1/2 - 1/2}$$

$$\left(\frac{7}{15} \right)$$
Constructing optimal sampling operators

- Consider a matrix Φ the following three “good” properties
 - CS–1: Minimal singular value of submatrices (with $< \rho n / \log(m)$ columns) is $> \eta_1 > 0$
 — Quantifies linear independence

Theorem 7 of [Donoho2006]

For a Φ satisfying CS–1–3 and a constant C, $
\inf A \sup x \in X m, p (R) ||x - A_n(\Phi x)||_2 \leq C \cdot \left(\frac{n}{\log m} \right)^{1/2 - 1/p} \frac{7}{15}$
Consider a matrix Φ the following three “good” properties

- **CS–1:** Minimal singular value of submatrices (with $< \rho n / \log(m)$ columns) is $> \eta_1 > 0$

 —Quantifies linear independence

- **CS–2:** For any $v \in$ the subspace spanned by each submatrix (with $< \rho n / \log(m)$ columns), we have

 $||v||_2 \leq \frac{c}{\sqrt{n}} ||v||_1$

- **CS–3:** (A technical condition on the quotient norm)

 Theorem 7 of [Donoho2006] For a Φ satisfying CS–1–3 and a constant C

 \[
 \inf_A \sup_{x \in \mathbb{R}^m} \left| \left| x - A_n(\Phi x) \right| \right|_2 \leq C \left(\frac{n}{\log m} \right)^{1/2 - 1/p}
 \]
Consider a matrix Φ the following three “good” properties

- **CS–1:** Minimal singular value of submatrices (with $< \rho n / \log(m)$ columns) is $> \eta_1 > 0$ —Quantifies linear independence

- **CS–2:** For any $v \in$ the subspace spanned by each submatrix (with $< \rho n / \log(m)$ columns), we have

$$||v||_2 \leq \frac{c}{\sqrt{n}} ||v||_1$$

—Note that we always have $\frac{1}{\sqrt{n}} ||v||_1 \leq ||v||_2$.
Consider a matrix Φ the following three “good” properties

- **CS–1:** Minimal singular value of submatrices (with $< \rho n / \log(m)$ columns) is $> \eta_1 > 0$
 —Quantifies linear independence

- **CS–2:** For any $v \in$ the subspace spanned by each submatrix (with $< \rho n / \log(m)$ columns), we have
 $$||v||_2 \leq \frac{c}{\sqrt{n}} ||v||_1$$
 —Note that we always have $\frac{1}{\sqrt{n}} ||v||_1 \leq ||v||_2$.

- **CS–3:** (A technical condition on the quotient norm)
Consider a matrix Φ with the following three “good” properties:

- **CS–1**: Minimal singular value of submatrices (with $< \rho \frac{n}{\log(m)}$ columns) is $> \eta_1 > 0$—Quantifies linear independence
- **CS–2**: For any $v \in$ the subspace spanned by each submatrix (with $< \rho \frac{n}{\log(m)}$ columns), we have
 \[
 \|v\|_2 \leq \frac{c}{\sqrt{n}} \|v\|_1
 \]
 —Note that we always have $\frac{1}{\sqrt{n}} \|v\|_1 \leq \|v\|_2$.
- **CS–3**: (A technical condition on the quotient norm)

Theorem 7 of [Donoho2006]

For a Φ satisfying CS–1-3 and a constant C,

\[
\inf_{A_n} \sup_{x \in X_{m,p}(R)} \|x - A_n(\Phi x)\|_2 \leq C \cdot (n/ \log m)^{1/2 - 1/p}
\]
Do matrices satisfying the conditions CS–1-3 even exist?
 - Yes! And a random sampling method will almost surely yield a matrix satisfying CS–1-3
Finding a “good” Φ

- Do matrices satisfying the conditions CS–1-3 even exist?
 - Yes! And a random sampling method will almost surely yield a matrix satisfying CS–1-3

- Algorithmically
 - Randomly generate each column of Φ from the uniform distribution over S^{n-1} (n-dimensional unit sphere)
 - $P(\Phi$ doesn’t satisfy CS–1-3) decreases exponentially in n

- This is just one of many ways
Recap so far

- Want to reconstruct $x \in \mathbb{R}^m$ using fewer than m measurements, given that x is sparse

- Construct a matrix Φ by sampling each column randomly from S^{n-1}

- With high probability, we have
 \[
 \inf_{A_n} \sup_{\text{sparse } x} \|x - A_n(\Phi x)\|_2 \leq C \cdot (n/ \log m)^{1/2 - 1/p}
 \]

- Next up: Finding A_n that are near-optimal and have low-complexity implementations
Part II: Reconstruction operators A_n
We have the measured y_n, and need to find $x \in X_{p,m}(R)$ such that $y_n = \Phi x$

Severely *undetermined* problem
We have the measured y_n, and need to find $x \in X_{p,m}(R)$ such that $y_n = \Phi x$

Severely **undetermined** problem

In practice, a good idea is min-p norm solution

$$\text{minimize } ||x||_p \text{ subject to } \Phi x = y_n$$
Reconstruction Kernel

- We have the measured y_n, and need to find $x \in X_{p,m}(R)$ such that $y_n = \Phi x$

- Severely **undetermined** problem

- In practice, a good idea is min-p norm solution

$$\text{minimize } ||x||_p \text{ subject to } \Phi x = y_n$$

- Don’t need to know R

- Need p

- For small p, highly **nonconvex** problem
What if we solve an easier problem?

P1: minimize $||x||_1$ subject to $\Phi x = y_n$

convex, well-studied, poly-time methods

Question: Is ℓ_1 norm a good proxy for the ℓ_p norm?

Answer: Yes, if the matrix Φ satisfies the conditions CS-1–3!

Theorem 9 of [Donoho2006]

Let $y_n = \Phi x_0$. If Φ satisfies conditions CS-1–3, then a solution $\hat{x}_{1,n}$ of problem P1 satisfies

$||x_0 - \hat{x}_{1,n}||_2 \leq C_p ||x_0||_p \cdot \left(\frac{n}{\log m}\right)^{1/2 - 1/p}$.

12/15
What if we solve an easier problem?

\[\text{P1: minimize } ||x||_1 \text{ subject to } \Phi x = y_n \]

convex, well-studied, poly-time methods

Question: Is \(\ell_1 \) norm a good proxy for the \(\ell_p \) norm?

Answer: Yes, if the matrix \(\Phi \) satisfies the conditions CS-1–3!
What if we solve an easier problem?

\[\text{P1: minimize } \|x\|_1 \text{ subject to } \Phi x = y_n \]

convex, well-studied, poly-time methods

Question: Is \(\ell_1 \) norm a good proxy for the \(\ell_p \) norm?

Answer: Yes, if the matrix \(\Phi \) satisfies the conditions CS-1–3!

Theorem 9 of [Donoho2006]

Let \(y_n = \Phi x_0 \). If \(\Phi \) satisfies conditions CS-1–3, then a solution \(\hat{x}_{1,n} \) of problem P1 satisfies

\[\|x_0 - \hat{x}_{1,n}\|_2 \leq C_p \|x_0\|_p \cdot \left(\frac{n}{\log m} \right)^{1/2-1/p} . \]
A simple illustrative theorem

For \(\Phi \) satisfying CS1–3,

\[||v||_2 \leq c \sqrt{n} ||v||_1 \]

Fact 2: If \(v \in \ker(\Phi) \), then

\[||v^T||_1 \leq ||v||_1 \frac{1}{2} \]

for \(T \leq n \frac{1}{4} \).

Theorem

If \(\Phi \) satisfies CS1–3, \(\Phi x = y \) and

\[||x||_0 \leq n \frac{1}{16} c^2 \]

then \(x \) is the uniquely optimal solution to

\[P_1 \]

Proof:

Let \(w = x + v \), for \(v \in \ker(\Phi) \). Set \(T = \text{supp}(x) \). We then have

\[||w||_1 \geq ||x||_1 - 2 ||v^T||_1 + ||v||_1 2 \text{ (invoking aforementioned fact)} \geq ||x||_1 \]
A simple illustrative theorem

For Φ satisfying CS1–3,

- **Fact 1:** If \(v \in \text{ker}(\Phi) \), then \(||v||_2 \leq \frac{c}{\sqrt{n}} ||v||_1 \) for a constant \(c \).

- **Fact 2:** If \(v \in \text{ker}(\Phi) \), then \(||v_T||_1 \leq \frac{||v||_1}{4} \) for \(T \leq \frac{n}{16c^2} \).
A simple illustrative theorem

For Φ satisfying CS1–3,

- **Fact 1:** If $v \in \ker(\Phi)$, then $||v||_2 \leq \frac{c}{\sqrt{n}} ||v||_1$ for a constant c

- **Fact 2:** If $v \in \ker(\Phi)$, then $||v_T||_1 \leq \frac{||v||_1}{4}$ for $T \leq \frac{n}{16c^2}$.

Theorem

If Φ satisfies CS1–3, $\Phi x = y_n$ and $||x||_0 \leq n/16c^2$, then x is the uniquely optimal solution to P_1.
A simple illustrative theorem

For Φ satisfying CS1–3,

- **Fact 1**: If \(v \in \ker(\Phi) \), then \(||v||_2 \leq \frac{c}{\sqrt{n}} ||v||_1 \) for a constant \(c \)

- **Fact 2**: If \(v \in \ker(\Phi) \), then \(||v T||_1 \leq \frac{||v||_1}{4} \) for \(T \leq \frac{n}{16c^2} \).

Theorem

If Φ satisfies CS1–3, \(\Phi x = y_n \) and \(||x||_0 \leq n/16c^2 \), then \(x \) is the uniquely optimal solution to \(P_1 \).

Proof: Let \(w = x + v \), for \(v \in \ker(\Phi) \). Set \(T = \text{supp}(x) \). We then have
A simple illustrative theorem

For \(\Phi \) satisfying CS1–3,

- **Fact 1:** If \(v \in \ker(\Phi) \), then \(||v||_2 \leq \frac{c}{\sqrt{n}}||v||_1 \) for a constant \(c \)

- **Fact 2:** If \(v \in \ker(\Phi) \), then \(||v_T||_1 \leq \frac{||v||_1}{4} \) for \(T \leq \frac{n}{16c^2} \).

Theorem

If \(\Phi \) satisfies CS1–3, \(\Phi x = y_n \) and \(||x||_0 \leq n/16c^2 \), then \(x \) is the uniquely optimal solution to \(P_1 \).

Proof: Let \(w = x + v \), for \(v \in \ker(\Phi) \). Set \(T = \text{supp}(x) \). We then have

\[
||w||_1 = ||w_T||_1 + ||w_{\overline{T}}||_1
\]
A simple illustrative theorem

For Φ satisfying CS1–3,

- **Fact 1:** If $v \in \ker(\Phi)$, then $\|v\|_2 \leq \frac{c}{\sqrt{n}} \|v\|_1$ for a constant c.

- **Fact 2:** If $v \in \ker(\Phi)$, then $\|v_T\|_1 \leq \frac{\|v\|_1}{4}$ for $T \leq \frac{n}{16c^2}$.

Theorem

If Φ satisfies CS1–3, $\Phi x = y_n$ and $\|x\|_0 \leq n/16c^2$, then x is the uniquely optimal solution to P_1.

Proof: Let $w = x + v$, for $v \in \ker(\Phi)$. Set $T = \text{supp}(x)$. We then have

$$
\|w\|_1 = \|w_T\|_1 + \|w_{\overline{T}}\|_1 \\
\geq \|x\|_1 - \|v_T\|_1 + \|v_{\overline{T}}\|_1
$$
A simple illustrative theorem

For Φ satisfying CS1–3,

- **Fact 1:** If $v \in \ker(\Phi)$, then $||v||_2 \leq \frac{c}{\sqrt{n}}||v||_1$ for a constant c

- **Fact 2:** If $v \in \ker(\Phi)$, then $||v_T||_1 \leq \frac{||v||_1}{4}$ for $T \leq \frac{n}{16c^2}$.

Theorem

If Φ satisfies CS1–3, $\Phi x = y_n$ and $||x||_0 \leq n/16c^2$, then x is the uniquely optimal solution to P_1.

Proof: Let $w = x + v$, for $v \in \ker(\Phi)$. Set $T = \supp(x)$. We then have

\[
||w||_1 = ||w_T||_1 + ||w_{\overline{T}}||_1 \\
\geq ||x||_1 - ||v_T||_1 + ||v_{\overline{T}}||_1 \\
= ||x||_1 - 2||v_T||_1 + ||v||_1 \\
\geq ||x||_1 + \frac{||v||_1}{2} \quad \text{(invoking aforementioned fact)}
\]
A simple illustrative theorem

For \(\Phi \) satisfying CS1–3,

- **Fact 1:** If \(v \in \ker(\Phi) \), then \(\|v\|_2 \leq \frac{c}{\sqrt{n}} \|v\|_1 \) for a constant \(c \)

- **Fact 2:** If \(v \in \ker(\Phi) \), then \(\|v_T\|_1 \leq \frac{\|v\|_1}{4} \) for \(T \leq \frac{n}{16c^2} \).

Theorem

If \(\Phi \) satisfies CS1–3, \(\Phi x = y_n \) and \(\|x\|_0 \leq n/16c^2 \), then \(x \) is the uniquely optimal solution to \(P_1 \).

Proof: Let \(w = x + v \), for \(v \in \ker(\Phi) \). Set \(T = \text{supp}(x) \). We then have

\[
\|w\|_1 = \|w_T\|_1 + \|w_{\overline{T}}\|_1 \\
\geq \|x\|_1 - \|v_T\|_1 + \|v_{\overline{T}}\|_1 \\
= \|x\|_1 - 2\|v_T\|_1 + \|v\|_1 \\
\geq \|x\|_1 + \frac{\|v\|_1}{2} \quad \text{(invoking aforementioned fact)} \\
\geq \|x\|_1.
\]
Some real-world applications

- MRI: Most significantly impacted—scan times are now much shorter

- Photography: Used in mobile phone camera sensors, can reduce image acquisition energy by as much as a factor of 15

- Electron microscopy, radio astronomy,
Set out to understand

\[E_n(X_m, p(R)) := \inf_{A_n, \Phi} \sup_{x \in X_m, p(R)} ||x - A_n(\Phi x)||_2 \]
Set out to understand

\[E_n(X_m, p(R)) := \inf_{A_n, \Phi} \sup_{x \in X_m, p(R)} \| x - A_n(\Phi x) \|_2 \]

Established the fundamental limit

\[E_n(X_m, p(R)) = \Theta((n/ \log(m))^{1/2 - 1/p}) \]
Summary

- Set out to understand

\[E_n(X_m,p(R)) := \inf_{A_n, \Phi} \sup_{x \in X_m,p(R)} \|x - A_n(\Phi x)\|_2 \]

- Established the fundamental limit

\[E_n(X_m,p(R)) = \Theta((n/\log(m))^{1/2 - 1/p}) \]

- Listed some properties that characterize “good” \(\Phi \) achieving this limit

- Listed explicit constructions of good \(\Phi \)—one way is to randomly sample columns from \(S^{n-1} \)
Summary

- Set out to understand

\[E_n(X_m, p(R)) := \inf_{A_n, \Phi} \sup_{x \in X_m, p(R)} ||x - A_n(\Phi x)||_2 \]

- Established the fundamental limit

\[E_n(X_m, p(R)) = \Theta((n/\log(m))^{1/2 - 1/p}) \]

- Listed some properties that characterize “good” \(\Phi \) achieving this limit

- Listed explicit constructions of good \(\Phi \)—one way is to randomly sample columns from \(S^{n-1} \)

- Found a reconstruction operator \(A_n \) implementable in poly-time, \(A_n \) solves

\[P1: \text{minimize } ||x||_1 \text{ subject to } \Phi x = y_n \]

- The above combination of \(\Phi \) and \(A_n \) achieves the fundamental limit