A latent variable approach to word embeddings

Sanjoy Dasgupta

An embedding-based generative model of text

Common methodology in unsupervised learning:

• Define a generative model, with some parameters θ, that produces a particular kind of data.
• Think of observed data as coming from such a model.
• Option 1: find the θ most likely to have produced the data.
• Option 2: assume the data truly came from such a model and recover the "true" θ.
Overview of generative model

Want a generative model of text under which:

• Word embedding methods can be seen to recover the “correct” vectors.
• Certain types of relations can be seen to indeed satisfy simple linear relationships in vector space.

Generative process for corpus of words: $w_1 w_2 w_3 \cdots$:

• Unseen “discourse vector” c_t follows a random walk in \mathbb{R}^d:
 \[c_1 \rightarrow c_2 \rightarrow c_3 \rightarrow \cdots \]

• At time t, word $w \in W$ is emitted, with probability
 \[\Pr(w) \propto e^{v(w) \cdot c_t}. \]

Here $\{v(w) : w \in W\} \subset \mathbb{R}^d$ are embeddings to be recovered.

Assumptions on discourse vector

• Stationary distribution of c_t is uniform over the unit sphere in \mathbb{R}^d.
• Each step of the discourse vector is small:
 \[||c_t - c_{t-1}|| \leq \epsilon / \sqrt{d}. \]
Assumptions on word vectors

Each word vector $v(w)$ is chosen independently as follows:

- Pick a direction v at random from the unit sphere in \mathbb{R}^d
- Pick a length s with mean $O(1)$ and max value some small constant.
- Word vector = sv.

Why bother with s?

When discourse vector is c,

$$\text{Prob}_c(w) = \frac{e^{c \cdot v(w)}}{Z_c}, \text{ where } Z_c = \sum_{w'} e^{c \cdot v(w')}$$

Claim. The normalizers Z_c are almost identical for almost all c.

Pointwise mutual information

Under these assumptions, for any w, w',

$$\text{PMI}(w, w') = \log \frac{\Pr(w, w')}{\Pr(w)\Pr(w')} \approx \frac{v(w) \cdot v(w')}{d}$$

Therefore, can recover $v(\cdot)$ by factoring the PMI matrix.

This is shown via two intermediate results:

$$\log \Pr(w) \approx \frac{\|v(w)\|^2}{2d} - \log Z$$

$$\log \Pr(w, w') \approx \frac{\|v(w) + v(w')\|^2}{2d} - 2 \log Z$$
Probability of a word

Claim. $\log \Pr(w) \approx \frac{\|v(w)\|^2}{2d} - \log Z$.

Since discourse vector c is uniform over S^{d-1},

$$\Pr(w) = \mathbb{E}_{c \sim S^{d-1}} \left[\frac{e^{c \cdot v(w)}}{Z_c} \right]$$

$$\approx \frac{1}{Z} \mathbb{E}_{c \sim N(0, (1/d)I_d)} \left[\exp(c \cdot v(w)) \right]$$

$$\approx \frac{1}{Z} \mathbb{E}_{x \sim N(0, \|v(w)\|^2/d)} \left[\exp(x) \right]$$

$$= \frac{1}{Z} \exp(\|v(w)\|^2/(2d))$$

Why are relations = lines?

Why can we solve analogies $a : b :: c :?$ using

$$\arg\min_d \|v(b) - v(a) + v(c) - v(d)\|^2$$

Previous insight (Pennington, Socher, Manning): For any word x,

$$\frac{\Pr(x|\text{king})}{\Pr(x|\text{queen})} = \frac{\Pr(x|\text{man})}{\Pr(x|\text{woman})}$$

To see this, consider three cases:

- x is gender-neutral
- x is 'he', 'Henry', etc
- x is 'she', 'Elizabeth', etc.
Key assumption: There is a function $\Phi : W \rightarrow \mathbb{R}$ such that for any pair (a, b) satisfying the relation,

$$\frac{\Pr(x|a)}{\Pr(x|b)} \approx \Phi(x).$$

At the same time, under earlier assumptions,

$$\log \Pr(x|a) = \text{PMI}(x, a) + \log \Pr(x) \approx \frac{v(x) \cdot v(a)}{d} + \log \Pr(x)$$

and thus

$$\log \frac{\Pr(x|a)}{\Pr(x|b)} \approx v(x) \cdot \frac{v(a) - v(b)}{d}.$$

Therefore, $v(a) - v(b)$ is the same for all (a, b) satisfying the relation.