Learning Generative Models

- We assume data comes from some unknown distribution P_r.
- We want to learn a distribution P_θ, where θ are the parameters of the distribution.
- One approach is to learn a function g_θ that transforms an existing distribution Z into P_θ. Here, g_θ is some differentiable function, Z is usually a Gaussian distribution, and $P_\theta = g_\theta(Z)$.
- To train g_θ (and by extension P_θ), we need a measure of distance between distributions.
Different distances

Consider a probability distributions defined over R^2 where the true data
distribution is $(0, y)$, with y sampled uniformly from $U[0,1]$ (right figure).
We try to model it with the family of distributions P_θ, where
$P_\theta = (\theta, y)$, with y also sampled from $U[0,1]$.

Below are some distance measures:

- The Total Variation (TV) distance is
 \[\delta(P_r, P_g) = \sup_A |P_r(A) - P_g(A)| \]

- The Kullback-Leibler (KL) divergence is
 \[KL(P_r || P_g) = \int_x \log \left(\frac{P_r(x)}{P_g(x)} \right) P_r(x) \, dx \]
 This isn't symmetric. The reverse KL divergence is defined as $KL(P_g || P_r)$.

- The Jenson-Shannon (JS) divergence: Let M be the mixture distribution $M = P_r/2 + P_g/2$.
 Then
 \[JS(P_r, P_g) = \frac{1}{2} KL(P_r || P_m) + \frac{1}{2} KL(P_g || P_m) \]

Wasserstein Distance

The Wasserstein distance is the *minimum cost* of transporting mass in converting the data
distribution P_g to the data distribution P_r.

\[W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}(x,y) \sim \gamma \left[\|x - y\| \right] \]

$\Pi(P_r, P_g)$ denotes the set of all joint distributions $\gamma(x, y)$ whose marginals are respectively P_r
and P_g.

Fig. 1: Probability distribution P_r and P_θ, each with ten states.
Earth Mover’s Distance

Move boxes from left configuration to the configuration in the right.

- Moving cost = weight*distance.
- Box 1 is moved from location 1 to 7, so distance is 6.
- Move 2 boxes from location 3 to 10 and the entry γ(3, 10) is therefore set to 2. Cost is 2x7 = 14.

Examples of Transport Plans

- Wasserstein Distance is the cost for the cheapest plan.
- Π contains all the possible transport plan γ.
- The amount of mass that leaves x is ∫γ(x, y) dy and it must equal amount of mass originally at x i.e. Pr(x).
- The amount of mass that enters y is ∫x γ(x, y) dx and it must equal amount the amount of mass that ends up at y i.e. Pg(y).
What is the Earth Mover’s Distance in our example?

Because the two distributions are just translations of one another, the best way transport plan moves mass in a straight line from $(0, y)$ to (θ, y). This gives: $W(P_0, P_\theta) = |\theta|$

- There exist sequences of distributions that don’t converge under the JS, KL, reverse KL, or TV divergence, but which do converge under the EM distance.
- For the JS, KL, reverse KL, and TV divergence, there are cases where the gradient is always 0. EM plot is continuous and provides usable gradient everywhere.

Figure 1: These plots show $\rho(P_0, P_\theta)$ as a function of θ when ρ is the EM distance (left plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

EM distance vs others in our example

Real and fake distribution when $\theta = 1$
Wasserstein GAN

Computing Wasserstein distance exactly is intractable:

\[
W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(x,y) \sim \gamma} \left[\|x - y\| \right]
\]

How do we approximate this?

1. A result from Kantorovich-Rubinstein duality shows \(W \) is equivalent to:

\[
W(P_r, P_\theta) = \sup_{\|f\|_L \leq 1} \mathbb{E}_{x \sim P_r}[f(x)] - \mathbb{E}_{x \sim P_\theta}[f(x)]
\]

(where the supremum is taken over all 1-Lipschitz functions.)

2. If we replace the supremum over 1-Lipschitz functions with the supremum over \(K \)-Lipschitz functions, then the supremum is \(K \cdot W(P_r, P_\theta) \) instead. The supremum over \(K \)-Lipschitz functions \(\{f : \|f\|_L \leq K\} \) is still intractable.

3. Suppose we have a parametrized function family \(\{f_w\}_{w \in \mathcal{W}} \), where \(w \) are the weights and \(\mathcal{W} \) is the set of all possible weights and suppose these functions are all \(K \)-Lipschitz functions for some \(K \). Then we have:

\[
\max_{w \in \mathcal{W}} \mathbb{E}_{x \sim P_r}[f_w(x)] - \mathbb{E}_{x \sim P_\theta}[f_w(x)] \leq \sup_{\|f\|_L \leq K} \mathbb{E}_{x \sim P_r}[f(x)] - \mathbb{E}_{x \sim P_\theta}[f(x)]
\]

\[
= K \cdot W(P_r, P_\theta)
\]

Training in WGAN

- Given a fixed \(g_\theta \), we can compute the optimal \(f_w \) for the Wasserstein distance. We can then backprop through \(W(P_r, g_\theta(Z)) \) to get the gradient for \(\theta \).

\[
\nabla_\theta W(P_r, P_\theta) = \nabla_\theta \left(\mathbb{E}_{x \sim P_r}[f_w(x)] - \mathbb{E}_{z \sim Z}[f_w(g_\theta(z))] \right)
\]

\[
= -\mathbb{E}_{z \sim Z}[\nabla_\theta f_w(g_\theta(z))]
\]

- Training Process has three steps:
 - For a fixed \(\theta \), compute an approximation of \(W(P_r, P_\theta) \) by training \(f_w \) (Discriminator) to convergence.
 - Once we find the optimal \(f_w \), compute the \(\theta \) gradient \(-\mathbb{E}_{z \sim Z}[\nabla_\theta f_w(g_\theta(z))] \) by sampling several \(z \sim Z \).
 - Update \(\theta \), and repeat the process.
- This entire derivation only works when the function family \(\{f_w\}_{w \in \mathcal{W}} \) is \(K \)-Lipschitz. The weights \(w \) are constrained to lie within \([-c, c]\), by clipping \(w \), after every update for \(w \).
WGAN Algorithm

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values $\alpha = 0.00005$, $c = 0.01$, $m = 64$, $n_{\text{critic}} = 5$.

Require: α, the learning rate. c, the clipping parameter. m, the batch size.
 n_{critic}, the number of iterations of the critic per generator iteration.

Require: w_0, initial critic parameters. θ_0, initial generator’s parameters.

1: while θ has not converged do
 2: for $t = 0,...,n_{\text{critic}}$ do
 3: Sample $\{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r$ a batch from the real data.
 4: Sample $\{z^{(i)}\}_{i=1}^m \sim p(z)$ a batch of prior samples.
 5: $g_w \leftarrow \nabla_w \left[\frac{1}{m} \sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^m f_w(g_{\theta}(z^{(i)})) \right]$
 6: $w \leftarrow w + \alpha \cdot \text{RMSProp}(w, g_w)$
 7: $w \leftarrow \text{clip}(w, -c, c)$
 8: end for
 9: Sample $\{z^{(i)}\}_{i=1}^m \sim p(z)$ a batch of prior samples.
 10: $g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^m f_w(g_{\theta}(z^{(i)}))$
 11: $\theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, g_{\theta})$
12: end while

Experiment to showcase difference between GAN and WGAN

- There are two 1D Gaussian distributions (real and fake).
- Train a GAN discriminator and WGAN critic to optimality and plot their values.

WGAN gives a reasonably nice gradient over everything!
Wasserstein loss seems to correlate well with image quality.

JSD loss does not correlate with image quality
Improved Stability

- If we remove batch norm from the generator, WGAN still generates okay samples, but DCGAN fails completely.
- No evidence of **Mode Collapse** in Author’s experiment

Problems with WGAN

- The difficulty in WGAN is to enforce the Lipschitz constraint.
- WGAN may still result in bad quality images and doesn’t converge, especially when the hyperparameter ‘c’ is not tuned correctly.
- It results in either vanishing or exploding gradients.
- Weight clipping biases the critic towards much simpler Functions.
- Given a fixed critic architecture and fixed `c` for clamping, can we quantitatively compare different generators by computing the Wasserstein estimate of both?
- Because of the wide range of performance under different hyperparameters, hyperparameter tuning is particularly important for any cost functions, and therefore it will have a better return of investments.
References

https://medium.com/@sunnerli/the-story-about-wgan-784be5acd84c