Feedforward neural nets

CSE 250B

Outline

1 Architecture
2 Expressivity
3 Learning

The architecture

The value at a hidden unit

How is h computed from z_1, \ldots, z_m?

- $h = \sigma(w_1z_1 + w_2z_2 + \cdots + w_mz_m + b)$
- $\sigma(\cdot)$ is a nonlinear activation function, e.g. “rectified linear”

$$\sigma(u) = \begin{cases} u & \text{if } u \geq 0 \\ 0 & \text{otherwise} \end{cases}$$
Common activation functions

- Threshold function or Heaviside step function
 \[\sigma(z) = \begin{cases}
 1 & \text{if } z \geq 0 \\
 0 & \text{otherwise}
 \end{cases} \]

- Sigmoid
 \[\sigma(z) = \frac{1}{1 + e^{-z}} \]

- Hyperbolic tangent
 \[\sigma(z) = \tanh(z) \]

- ReLU (rectified linear unit)
 \[\sigma(z) = \max(0, z) \]

Why do we need nonlinear activation functions?

The output layer

Classification with \(k \) labels: want \(k \) probabilities summing to 1.

- \(y_1, \ldots, y_k \) are linear functions of the parent nodes \(z_i \).
- Get probabilities using softmax:
 \[\Pr(\text{label } j) = \frac{e^{y_j}}{e^{y_1} + \cdots + e^{y_k}}. \]

The complexity
Approximation capability

Let \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) be any continuous function. There is a neural net with a single hidden layer that approximates \(f \) arbitrarily well.

- The hidden layer may need a lot of nodes.
- For certain classes of functions:
 - Either: one hidden layer of enormous size
 - Or: multiple hidden layers of moderate size

Stone-Weierstrass theorem I

If \(f : [a, b] \rightarrow \mathbb{R} \) is continuous then there is a sequence of polynomials \(P_n \) such that \(P_n \) has degree \(n \) and

\[
\sup_{x \in [a, b]} |P_n(x) - f(x)| \rightarrow 0 \text{ as } n \rightarrow \infty.
\]

Stone-Weierstrass theorem II

Let \(K \subset \mathbb{R}^d \) be some bounded set.

Suppose there is a collection of functions \(\mathcal{A} \) such that:

- \(\mathcal{A} \) is an algebra: closed under addition, scalar multiplication, and multiplication.
- \(\mathcal{A} \) does not vanish on \(K \): for any \(x \in K \), there is some \(h \in \mathcal{A} \) with \(h(x) \neq 0 \).
- \(\mathcal{A} \) separates points in \(K \): for any \(x \neq y \in K \), there is some \(h \in \mathcal{A} \) with \(h(x) \neq h(y) \).

Then for any continuous function \(f : K \rightarrow \mathbb{R} \) and any \(\epsilon > 0 \), there is some \(h \in \mathcal{A} \) with

\[
\sup_{x \in K} |f(x) - h(x)| \leq \epsilon.
\]

Example: exponentiated linear functions

For domain \(K = \mathbb{R}^d \), let \(\mathcal{A} \) be all linear combinations of \(\{ e^{w \cdot x + b} : w \in \mathbb{R}^d, b \in \mathbb{R} \} \).

1. Is an algebra.
2. Does not vanish.
3. Separates points.
Variation: RBF kernels

For domain $K = \mathbb{R}^d$, and any $\sigma > 0$, let \mathcal{A} be all linear combinations of
$$\{e^{-\|x-u\|^2/\sigma^2} : u \in \mathbb{R}^d\}.$$

Any continuous function is approximated arbitrarily well by \mathcal{A}.

A class of activation functions

For domain $K = \mathbb{R}^d$, let \mathcal{A} be all linear combinations of
$$\{\sigma(w \cdot x + b) : w \in \mathbb{R}^d, b \in \mathbb{R}\}$$
where $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ is continuous and non-decreasing with
$$\sigma(z) \rightarrow \begin{cases} 1 & \text{if } z \rightarrow \infty \\ 0 & \text{if } z \rightarrow -\infty \end{cases}$$

This also satisfies the conditions of the approximation result.

Learning a net: the loss function

Classification problem with k labels.

- Parameters of entire net: W
- For any input x, net computes probabilities of labels:
$$\Pr_W(\text{label } = j | x)$$
- Given data set $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})$, loss function:
$$L(W) = -\sum_{i=1}^{n} \ln \Pr_W(y^{(i)} | x^{(i)})$$
(also called cross-entropy).

Nature of the loss function
Variants of gradient descent

Initialize \(W \) and then repeatedly update.

1. **Gradient descent**
 Each update involves the entire training set.

2. **Stochastic gradient descent**
 Each update involves a single data point.

3. **Mini-batch stochastic gradient descent**
 Each update involves a modest, fixed number of data points.

Chain rule

1. Suppose \(h(x) = g(f(x)) \), where \(x \in \mathbb{R} \) and \(f, g : \mathbb{R} \to \mathbb{R} \).
 Then: \(h'(x) = g'(f(x)) f'(x) \)

2. Suppose \(z \) is a function of \(y \), which is a function of \(x \).

Then:

\[
\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}
\]

Derivative of the loss function

Update for a specific parameter: derivative of loss function wrt that parameter.

A single chain of nodes

A neural net with one node per hidden layer:

For a specific input \(x \),
- \(h_i = \sigma(w_i h_{i-1} + b_i) \)
- The loss \(L \) can be gleaned from \(h_\ell \)

To compute \(dL/dw_i \) we just need \(dL/dh_i \):

\[
\frac{dL}{dw_i} = \frac{dL}{dh_i} \frac{dh_i}{dw_i} = \frac{dL}{dh_i} \sigma'(w_i h_{i-1} + b_i) h_{i-1}
\]
Backpropagation

- On a single forward pass, compute all the h_i.
- On a single backward pass, compute $dL/dh_\ell, \ldots, dL/dh_1$

$\mathbf{x} = h_0 \ h_1 \ h_2 \ h_3 \ \cdots \ h_\ell$

From $h_{i+1} = \sigma(w_{i+1}h_i + b_{i+1})$, we have

$$\frac{dL}{dh_i} = \frac{dL}{dh_{i+1}} \frac{dh_{i+1}}{dh_i} = \frac{dL}{dh_{i+1}} \sigma'(w_{i+1}h_i + b_{i+1}) w_{i+1}$$

Two-dimensional examples

What kind of net to use for this data?

- Input layer: 2 nodes
- One hidden layer: H nodes
- Output layer: 1 node
- Input \rightarrow hidden: linear functions, ReLU activation
- Hidden \rightarrow output: linear function, sigmoid activation

Example 1

$H = 2$

Example 2

$H = 4$
Example 2

$H = 8$: overparametrized

Example 3

$H = 64$

PyTorch snippet

Declaring and initializing the network:

d, H = 2, 8
model = torch.nn.Sequential(
 torch.nn.Linear(d, H),
 torch.nn.ReLU(),
 torch.nn.Linear(H, 1),
 torch.nn.Sigmoid())
lossfn = torch.nn.BCELoss()

A gradient step:

ypred = model(x)
loss = lossfn(ypred, y)
model.zero_grad()
loss.backward()
with torch.no_grad():
 for param in model.parameters():
 param -= eta * param.grad