Uncertainty in prediction

Can we usually expect to get a perfect classifier, if we have enough training data?

Problem 1: Inherent uncertainty

The available features x do not contain enough information to perfectly predict y, e.g.,
- $x = \text{complete medical record for a patient at risk for a disease}$
- $y = \text{will he/she contract the disease in the next 5 years?}$

Uncertainty in prediction, cont’d

Can we usually expect to get a perfect classifier, if we have enough training data?

Problem 2: Limitations of the model class

The type of classifier being used does not capture the decision boundary, e.g. using linear classifiers with:

Simplest case: using a linear function of x.

Conditional probability estimation for binary labels

- Given: data set of pairs (x, y) with $x \in \mathbb{R}^d$ and $y \in \{-1, 1\}$
- Return a classifier that also gives probabilities $\Pr(y = 1|x)$

Simplest case: using a linear function of x.
A linear model for conditional probability estimation

For data $x \in \mathbb{R}^d$, classify and return probabilities using a linear function

$$w_1x_1 + w_2x_2 + \cdots + w_dx_d + b = w \cdot x + b$$

where $w = (w_1, \ldots, w_d)$.

The probability of $y = 1$:
- Increases as the linear function grows.
- Is 50% when this linear function is zero.

How can we convert $w \cdot x + b$ into a probability?

The logistic regression model

Binary labels $y \in \{-1, 1\}$. Model:

$$Pr(y = 1|x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

What is $Pr(y = -1|x)$?

Summary: logistic regression for binary labels

- Data $x \in \mathbb{R}^d$
- Binary labels $y \in \{-1, 1\}$

Model parametrized by $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$:

$$Pr_{w,b}(y|x) = \frac{1}{1 + e^{-y(w \cdot x + b)}}$$

Learn parameters w, b from data
The learning problem

Given data \((x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, 1\}\)

Maximum-likelihood: pick \(w \in \mathbb{R}^d\) and \(b \in \mathbb{R}\) that maximize

\[
\prod_{i=1}^{n} \Pr_{w,b}(y^{(i)} | x^{(i)})
\]

Take log to get **loss function**

\[
L(w, b) = -\sum_{i=1}^{n} \ln \Pr_{w,b}(y^{(i)} | x^{(i)}) = \sum_{i=1}^{n} \ln(1 + e^{-y^{(i)}(w \cdot x^{(i)} + b)})
\]

Goal: minimize \(L(w, b)\).

As with linear regression, can absorb \(b\) into \(w\).

Yields simplified loss function \(L(w)\).

Convexity

- Bad news: no closed-form solution for \(w\)
- Good news: \(L(w)\) is **convex** in \(w\)

How to find the minimum of a convex function? By **local search**.

Gradient descent procedure for logistic regression

Given \((x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, 1\}\), find

\[
\arg \min_{w \in \mathbb{R}^d} L(w) = \sum_{i=1}^{n} \ln(1 + e^{-y^{(i)}(w \cdot x^{(i)})})
\]

- Set \(w_0 = 0\)
- For \(t = 0, 1, 2, \ldots\), until convergence:

\[
w_{t+1} = w_t + \eta_t \sum_{i=1}^{n} y^{(i)} x^{(i)} \Pr_{w_t}(-y^{(i)} | x^{(i)})
\]

where \(\eta_t\) is a “step size”

Toy example
Example: Sentiment data

Data set: sentences from reviews on Amazon, Yelp, IMDB. Each labeled as positive or negative.

• Needless to say, I wasted my money.
• He was very impressed when going from the original battery to the extended battery.
• I have to jiggle the plug to get it to line up right to get decent volume.
• Will order from them again!

2500 training sentences, 500 test sentences

Handling text data

Bag-of-words: vectorial representation of text sentences (or documents).

Fix V = some vocabulary.
Treat each sentence (or document) as a vector of length $|V|$:

$$x = (x_1, x_2, \ldots, x_{|V|}),$$

where $x_i =$ # of times the ith word appears in the sentence.

A logistic regression approach

Code positive as +1 and negative as −1.

$$\Pr_{w, b}(y \mid x) = \frac{1}{1 + e^{-y(w \cdot x + b)}}$$

Given $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, 1\}$, loss function

$$L(w, b) = \sum_{i=1}^{n} \ln(1 + e^{-y^{(i)}(w \cdot x^{(i)} + b)})$$

Convex problem with many solution methods, e.g.

• gradient descent, stochastic gradient descent
• Newton-Raphson, quasi-Newton

All converge to the optimal solution.

Local search in progress

Look at how loss function $L(w, b)$ changes over iterations of stochastic gradient descent.

Final model: test error 0.21.
Some of the mistakes

Not much dialogue, not much music, the whole film was shot as elaborately and aesthetically like a sculpture. 1

This film highlights the fundamental flaws of the legal process, that it’s not about discovering guilt or innocence, but rather, is about who presents better in court. 1

You need two hands to operate the screen. This software interface is decade old and cannot compete with new software designs. -1

The last 15 minutes of movie are also not bad as well. 1

If you plan to use this in a car forget about it. -1

If you look for authentic Thai food, go else where. -1

Waste your money on this game. 1

Margin and test error

Margin on test pt $x = \left| \Pr_{w,b}(y = 1|x) - \frac{1}{2} \right|$.

Interpreting the model

Words with the most positive coefficients

Words with the most negative coefficients