A host of prediction problems

Machine learning versus Algorithms

A central goal of both fields:

develop procedures that exhibit a desired input-output behavior.

- **Algorithms**: input-output mapping can be precisely defined.

 Input: Graph G, two nodes u, v in the graph.
 Output: Shortest path from u to v in G

- **Machine learning**: mapping cannot easily be made precise.

 Input: Picture of an animal.
 Output: Name of the animal.

Instead, provide examples of (input,output) pairs. Ask the machine to *learn* a suitable mapping itself.
Prediction problems: inputs and outputs

Basic terminology:

- **The input space, \(\mathcal{X} \).**

 E.g. 32 \(\times \) 32 RGB images of animals.

- **The output space, \(\mathcal{Y} \).**

 E.g. Names of 100 animals.

After seeing a bunch of examples \((x, y)\), pick a mapping

\[
f : \mathcal{X} \rightarrow \mathcal{Y}
\]

that accurately recovers the input-output pattern of the examples.

Categorize prediction problems by the type of **output space**: (1) discrete, (2) continuous, or (3) probability values

Discrete output space: classification

Binary classification

E.g., Spam detection

\(\mathcal{X} = \{ \text{email messages}\} \)

\(\mathcal{Y} = \{ \text{spam, not spam}\} \)

Multiclass

E.g., News article classification

\(\mathcal{X} = \{ \text{news articles}\} \)

\(\mathcal{Y} = \{ \text{politics, business, sports, . . .}\} \)

Structured outputs

E.g., Parsing

\(\mathcal{X} = \{ \text{sentences}\} \)

\(\mathcal{Y} = \{ \text{parse trees}\} \)

\(x = \text{“John hit the ball”} \)

\[
\text{S}\quad \text{VP}
\text{N} \quad \text{NP}
\text{V} \quad \text{D} \quad \text{N}
\text{John} \quad \text{hit} \quad \text{the} \quad \text{ball}.
\]
Continuous output space: regression

- **Pollution level prediction**
 Predict tomorrow’s air quality index in my neighborhood
 \(\mathcal{Y} = [0, \infty) \)
 \(< 100: \text{okay, } > 200: \text{dangerous} \)

- **Insurance company calculations**
 What is the expected life expectancy of this person?
 \(\mathcal{Y} = [0, 120] \)

What are suitable predictor variables \((\mathcal{X})\) in each case?

Probability estimation

\(\mathcal{Y} = [0, 1] \) represents **probabilities**

Example: Credit card transactions
- \(x = \) details of a transaction
- \(y = \) probability this transaction is fraudulent

Why not just treat this as a binary classification problem?
Roadmap for the course

1. Solving prediction problems
 Classification, regression, probability estimation

2. Representation learning
 Clustering, projection, dictionary learning, autoencoders

3. Deep learning