Outline

1. Architecture
2. Expressivity
3. Learning
The architecture

\[\begin{align*}
 y &= \sigma(h^{(\ell)}) \\
 h^{(\ell)} &= \sigma(h^{(\ell-1)}) \\
 \vdots \\
 h^{(2)} &= \sigma(h^{(1)}) \\
 h^{(1)} &= \sigma(h^{(0)}) \\
 x
\end{align*} \]

The value at a hidden unit

\[h \\
\begin{array}{cccc}
z_1 & z_2 & \cdots & z_m \\
\end{array} \]

How is \(h \) computed from \(z_1, \ldots, z_m \)?

- \(h = \sigma(w_1z_1 + w_2z_2 + \cdots + w_mz_m + b) \)
- \(\sigma(\cdot) \) is a nonlinear activation function, e.g. “rectified linear”

\[\sigma(u) = \begin{cases}
 u & \text{if } u \geq 0 \\
 0 & \text{otherwise}
\end{cases} \]
Common activation functions

- Threshold function or Heaviside step function
 \[\sigma(z) = \begin{cases}
 1 & \text{if } z \geq 0 \\
 0 & \text{otherwise}
 \end{cases} \]

- Sigmoid
 \[\sigma(z) = \frac{1}{1 + e^{-z}} \]

- Hyperbolic tangent
 \[\sigma(z) = \tanh(z) \]

- ReLU (rectified linear unit)
 \[\sigma(z) = \max(0, z) \]

Why do we need nonlinear activation functions?
The output layer

Classification with k labels: want k probabilities summing to 1.

\[y_1, \ldots, y_k \text{ are linear functions of the parent nodes } z_i. \]

\[\text{Get probabilities using } \texttt{softmax}: \]

\[\Pr(\text{label } j) = \frac{e^{y_j}}{e^{y_1} + \cdots + e^{y_k}}. \]

The complexity
Approximation capability

Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be any continuous function. There is a neural net with a single hidden layer that approximates f arbitrarily well.

- The hidden layer may need a lot of nodes.
- For certain classes of functions:
 - Either: one hidden layer of enormous size
 - Or: multiple hidden layers of moderate size

Learning a net: the loss function

Classification problem with k labels.

- Parameters of entire net: W
- For any input x, net computes probabilities of labels:
 \[Pr_W(\text{label} = j | x) \]
- Given data set $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})$, loss function:
 \[L(W) = - \sum_{i=1}^{n} \ln Pr_W(y^{(i)} | x^{(i)}) \]
 (also called cross-entropy).
Nature of the loss function

$L(w)$

w

$L(w)$

w

Variants of gradient descent

Initialize W and then repeatedly update.

1. **Gradient descent**
 Each update involves the entire training set.

2. **Stochastic gradient descent**
 Each update involves a single data point.

3. **Mini-batch stochastic gradient descent**
 Each update involves a modest, fixed number of data points.
Derivative of the loss function

Update for a specific parameter: derivative of loss function wrt that parameter.

\[y \]
\[h^{(\ell)} \]
\[: \]
\[h^{(2)} \]
\[h^{(1)} \]
\[x \]

Chain rule

1. Suppose \(h(x) = g(f(x)) \), where \(x \in \mathbb{R} \) and \(f, g : \mathbb{R} \to \mathbb{R} \).
 Then: \(h'(x) = g'(f(x)) f'(x) \)

2. Suppose \(z \) is a function of \(y \), which is a function of \(x \).

 Then:
 \[
 \frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}
 \]
A single chain of nodes

A neural net with one node per hidden layer:

\[x = h_0 \quad h_1 \quad h_2 \quad h_3 \quad \cdots \quad h_\ell \]

For a specific input \(x \),

- \(h_i = \sigma(w_i h_{i-1} + b_i) \)
- The loss \(L \) can be gleaned from \(h_\ell \)

To compute \(dL/dw_i \) we just need \(dL/dh_i \):

\[
\frac{dL}{dw_i} = \frac{dL}{dh_i} \frac{dh_i}{dw_i} = \frac{dL}{dh_i} \sigma'(w_i h_{i-1} + b_i) h_{i-1}
\]

Backpropagation

- On a single forward pass, compute all the \(h_i \).
- On a single backward pass, compute \(dL/dh_\ell, \ldots, dL/dh_1 \)

From \(h_{i+1} = \sigma(w_{i+1} h_i + b_{i+1}) \), we have

\[
\frac{dL}{dh_i} = \frac{dL}{dh_{i+1}} \frac{dh_{i+1}}{dh_i} = \frac{dL}{dh_{i+1}} \sigma'(w_{i+1} h_i + b_{i+1}) w_{i+1}
\]
Two-dimensional examples

What kind of net to use for this data?

- Input layer: 2 nodes
- One hidden layer: H nodes
- Output layer: 1 node
- Input \rightarrow hidden: linear functions, ReLU activation
- Hidden \rightarrow output: linear function, sigmoid activation

Example 1

$H = 2$
Example 2

$H = 4$

Example 2

$H = 8$: overparametrized
Example 3

\[H = 64 \]

PyTorch snippet

Declaring and initializing the network:

```python
d, H = 2, 8
model = torch.nn.Sequential(
    torch.nn.Linear(d, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, 1),
    torch.nn.Sigmoid())
lossfn = torch.nn.BCELoss()
```

A gradient step:

```python
ypred = model(x)
loss = lossfn(ypred, y)
model.zero_grad()
loss.backward()
with torch.no_grad():
    for param in model.parameters():
        param -= eta * param.grad
```