Choosing a classifier

So many choices:
- Nearest neighbor
- Different generative models
- Linear predictors with different loss functions
- Different kernels
- Neural nets
- etc.

Can one combine them?
And get a classifier that is better than any of them individually?
Combining simple classifiers

① No one classifier is going to be the final product. So why not keep the individual components simple?

② How to train each constituent classifier? On the full training set?

③ The full (combined) models may get enormous. Is this bad for generalization?

Weak learners

It is often easy to come up with a weak classifier, one that is marginally better than random guessing:

$$\Pr(h(X) \neq Y) \leq \frac{1}{2} - \epsilon$$

A learning algorithm that can consistently generate such classifiers is called a weak learner.

Is it possible to systematically boost the quality of a weak learner?
The blueprint for boosting

Given: data set \((x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})\).

- Initially give all points equal weight.
- Repeat for \(t = 1, 2, \ldots\):
 - Feed weighted data set to the weak learner, get back a weak classifier \(h_t\)
 - Reweight data to put more emphasis on points that \(h_t\) gets wrong
- Combine all these \(h_t\)’s linearly

\[\text{AdaBoost} \]

Data set \((x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})\), labels \(y^{(i)} \in \{-1, +1\}\).

1. Initialize \(D_1(i) = 1/n\) for all \(i = 1, 2, \ldots, n\)

2. For \(t = 1, 2, \ldots, T\):
 - Give \(D_t\) to weak learner, get back some \(h_t : \mathcal{X} \rightarrow [-1, 1]\)
 - Compute \(h_t\)’s margin of correctness:
 \[r_t = \sum_{i=1}^{n} D_t(i)y^{(i)}h_t(x^{(i)}) \in [-1, 1] \]
 \[\alpha_t = \frac{1}{2} \ln \frac{1 + r_t}{1 - r_t} \]
 - Update weights: \(D_{t+1}(i) \propto D_t(i) \exp (-\alpha_t y^{(i)} h_t(x^{(i)}))\)

3. Final classifier: \(H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)\)
Use “decision stumps” (single-feature thresholds) as weak classifiers

$h_1 \quad r_1 = 0.40, \alpha_1 = 0.42$

$h_2 \quad r_2 = 0.58, \alpha_2 = 0.65$

$h_3 \quad r_3 = 0.72, \alpha_3 = 0.92$
The surprising power of weak learning

Suppose that on each round t, the weak learner returns a rule h_t whose error on the time-t weighted data distribution is $\leq 1/2 - \gamma$.

Then, after T rounds, the training error of the combined rule

$$H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)$$

is at most $e^{-\gamma^2 T/2}$.
Boosting decision stumps and trees

\[x_4 > 5 \]
\[x_1 > 1 \]
\[x_3 > 0 \]
\[x_7 > 2 \]
\[x_8 > 1 \]

Boosting decision stumps and trees