Solutions to Homework Nine

1. (a) Each time you roll a die, the chance of getting a six is \(p = 1/6 \). So the expected number of rolls until you see a six is \(1/p = 6 \).

(b) Each time you pull out a random fish, the chance of getting a catfish is \(p = 50/1000 = 1/20 \). Thus the expected number of fish you need to pull out until you get a catfish is \(1/p = 20 \).

(c) Each time the computer chooses a random integer, it has a probability \(p = 1/10 \) of getting a multiple of 10. Therefore the expected number of trials is \(1/p = 10 \).

2. (a) On any iteration, the probability of outputting \(H \) is \(p(1-p) \) (probability of getting heads, then tails) and the probability of outputting \(T \) is \((1-p)p \) (probability of getting tails, then heads). Since these are equal, both outcomes are equally likely.

(b) The probability that a particular iteration is successful (that is, the algorithm halts) is \(2p(1-p) \). Thus the expected number of iterations is \(1/(2p(1-p)) \) and the expected number of coin tosses is twice this, \(1/(p(1-p)) \).

3. Here’s the algorithm, given input \(x \):

 Repeat 100 times:

 Run \(A(x) \)

 If it says ‘‘not prime’’, output ‘‘not prime’’ and halt

 Output ‘‘prime’’

 If \(x \) is “prime”, then \(A \) will always return “prime”, and hence the answer will be correct. If \(x \) is not prime, then the probability that \(A(x) \) returns “prime” is at most \(1/2 \), and the probability that it returns “prime” 100 times is at most \(1/2^{100} \).

4. (a) Here’s an algorithm that makes use of both \(A \) and \(B \). On input \(x \),

 Run \(A(x) \)

 If it says ‘‘not prime’’: output ‘‘not prime’’ and halt

 Run \(B(x) \) and output the answer

 To see why this works, suppose first that \(x \) is prime. Then \(A(x) \) will return “prime” and thus \(B(x) \) will be invoked, returning the right answer. On the other hand, if \(x \) is not prime, then either \(A(x) \) will detect this, or \(B(x) \) will be invoked.

(b) If the input is prime, both procedures will be called, for a running time of \(101T(n) \).

(c) If the input is not prime, then \(A(x) \) will detect this with probability at least \(1/2 \); otherwise \(B(x) \) will also need to be called. Thus the expected running time is \(T(n) + 0.5 \times 100T(n) = 51T(n) \).

5. This is equivalent to throwing \(n \) balls in \(n \) bins. The size of the largest bin is (with high probability) \(O(\log n) \), and this is therefore the number of hours the repairs would take overall.

6. We saw in class that when \(n \) balls are thrown into \(n^2 \) bins, there is at least a 1/2 probability that there will be no collisions. Therefore, we should set \(2^m = n^2 \), roughly, which means \(m = 2 \log n \).

7. Hashing with open addressing.

 (a) If \(n \) items are stored in a table of size \(2n \), half the table is empty. Let’s say we are inserting \(x \). The locations \(h(x, 0), h(x, 1), \ldots \) are random and thus each of them has at least a 1/2 chance of being empty. The probability the first \(k \) locations are all occupied is therefore at most \(1/2^k \).

(b) Let \(A_i \) be the event that the \(i \)th insertion requires more than \(k \) probes.

\[
\Pr(\text{some insertion requires more } k \text{ probes}) = \Pr(A_1 \cup A_2 \cup \cdots \cup A_n) \leq \Pr(A_1) + \cdots + \Pr(A_n) \leq \frac{n}{2^k}.
\]

For \(k = 2 \log_2 n \), this is \(1/n \).
8. **Skip lists.**

(a) Roughly speaking, a random element will on average lie halfway down the list and will thus need about \(n/2 \) time to locate. More precisely, the time taken to find the \(i \)th item in the list is \(i \). For an element chosen at random, the expected lookup time is thus

\[
\sum_{i=1}^{n} \Pr(\text{item } i \text{ is chosen}) \cdot i = \frac{1 + 2 + \cdots + n}{n} = \frac{n + 1}{2}.
\]

The worst-case lookup time is \(n \).

(b) Very roughly, a random element will on average be about halfway down the list, and will therefore be reached by about \(n/(2k) \) jump pointers and \(k/2 \) next pointers, for a total time of \(n/(2k) + k/2 \). The worst-case lookup time is \(n/k + k \).

(c) The best choice is \(k \approx \sqrt{n} \), leading to an expected and worst-case lookup time of \(O(\sqrt{n}) \).

9. We saw in class that when \(n \) items are stored in a Bloom filter of size \(m \), using \(k \) hash functions, the fraction of zero entries in the table is roughly \(e^{-kn/m} \). Therefore, a reasonable way to estimate \(n \) is as follows:

- Determine the fraction of zero entries in the table; call this \(q \).
- Return \((m/k) \ln(1/q)\).

10. **The secretary problem.**

(a) Let \(s_1 \) denote the best secretary and \(s_2 \) the second-best secretary. If \(s_2 \) is one of the first \(r \) candidates (which happens with probability \(r/n \)) and \(s_1 \) is one of the remaining \(n-r \) candidates (which happens with probability \((n-r)/n \)), then Barbara will correctly identify \(s_1 \).

\[
\Pr(\text{Barbara chooses } s_1) \geq \frac{r}{n} \cdot \frac{n-r}{n} = \frac{r(n-r)}{n^2}.
\]

(a) Setting \(r = n/2 \) results in a \(1/4 \) probability of success.