1. **Textbook problem 6.1.**

 Subproblem: Let $S(j)$ be the sum of the maximum-sum contiguous subsequence which ends exactly at a_j (but is possibly of length zero). We want $\max_j S(j)$.

 Recursive formulation: The subsequence defining $S(j)$ either (i) has length zero, or (ii) consists of the best subsequence ending at a_{j-1}, followed by element a_j. Therefore,
 \[
 S(j) = \max\{0, a_j + S(j-1)\}.
 \]

 For consistency $S(0) = 0$.

 Algorithm:

 \[
 S[0] = 0
 \]
 \[
 \text{for } j = 1 \text{ to } n:
 \]
 \[
 S[j] = \max(0, a_j + S[j-1])
 \]
 \[
 \text{return } \max_j S[j]
 \]

 Running time: Single loop, $O(n)$.

2. **Textbook problem 6.2.**

 Subproblem: Let $T(j)$ be the minimum penalty incurred up to location a_j, assuming you stop there. We want $T(n)$.

 Recursive formulation: Suppose we stop at a_j. The previous stop is some $a_i, i < j$ (or maybe a_j is the very first stop). Let’s try all possibilities for a_i:
 \[
 T(j) = \min_{0 \leq i < j} T(i) + (200 - (a_j - a_i))^2,
 \]

 where for convenience we set $T(0) = 0$ and $a_0 = 0$.

 Algorithm:

 \[
 \text{for } j = 1 \text{ to } n:
 \]
 \[
 T(j) = (200 - a_j)^2
 \]
 \[
 \text{for } i = 1 \text{ to } j - 1:
 \]
 \[
 T(j) = \min\{T(j), T(i) + (200 - (a_j - a_i))^2\}
 \]
 \[
 \text{return } T(n)
 \]

 Running time: Two loops, $O(n^2)$.

3. **Textbook problem 6.7.**

 Subproblem: Define $T(i,j)$ to be the length of the longest palindromic subsequence of $x[i \ldots j]$. We want $T(1,n)$.

 Recursive formulation: In computing $T(i,j)$, the first question is whether $x[i] = x[j]$. If so, we can match them up and then recurse inwards, to $T(i+1, j-1)$. If not, then at least one of them is not in the palindrome.

 \[
 T(i,j) = \begin{cases}
 1 & \text{if } i = j \\
 2 + T(i+1,j-1) & \text{if } i < j \text{ and } x[i] = x[j] \\
 \max\{T(i+1,j), T(i,j-1)\} & \text{otherwise}
 \end{cases}
 \]

 For consistency set $T(i,i-1) = 0$ for all i.

 Algorithm: Compute the $T(i,j)$ in order of increasing interval length $|j-i|$.

\[1\]
for $i = 2$ to $n + 1$:
 $T[i, i - 1] = 0$
for $i = 1$ to n:
 $T[i, i] = 1$
for $d = 1$ to $n - 1$: (interval length)
 for $i = 1$ to $n - d$:
 $j = i + d$
 if $x[i] = x[j]$:
 $T[i, j] = 2 + T[i + 1, j - 1]$
 else:
 $T[i, j] = \max\{T[i + 1, j], T[i, j - 1]\}$
return $T[1, n]$

Running time: There are $O(n^2)$ subproblems and each takes $O(1)$ time to compute, so the total running time is $O(n^2)$.

4. **Textbook problem 6.17.**

Subproblem: For any integer $0 \leq u \leq v$, define $T(u)$ to be true if it is possible to make change for u using the given coins x_1, x_2, \ldots, x_n. The answer we want is $T(v)$.

Recursive formulation: Notice that $T(u)$ is true if and only if $T(u - x_i)$ is true for some i.

For consistency, set $T(0)$ to true.

Algorithm:

- $T[0] = \text{true}$
- for $u = 1$ to v:
 - $T[u] = \text{false}$
 - for $i = 1$ to n:
 - if $u \geq x_i$ and $T[u - x_i]$: $T[u] = \text{true}$

Running time: The table has size v and each entry takes $O(n)$ time to fill; therefore the total running time is $O(nv)$.

5. **Number of paths in a DAG.**

Subproblem: Suppose G is a directed acyclic graph. For any node v in the graph, define $\text{numpaths}[v]$ to be the number of paths from s to v. The quantity we want is $\text{numpaths}[t]$.

Recursive formulation: Pick any node $v \neq s$ in the graph. Any path from s to v ends in an edge $(u, v) \in E$. Thus:

$$\text{numpaths}[v] = \sum_{u' : (u', v) \in E} \text{numpaths}[u']$$

And of course, $\text{numpaths}[s] = 1$.

Algorithm: We can fill out the array by considering the nodes in topological order:

- Find a topological ordering of G
- for all $v \in V$:
 - $\text{numpaths}[v] = 0$
- $\text{numpaths}[s] = 1$
- for all $u \in V$, in topological order:
 - for all $(u, v) \in E$:
 - $\text{numpaths}[v] = \text{numpaths}[v] + \text{numpaths}[u]$
- return $\text{numpaths}[t]$

Subproblem: Root the tree at any node \(r \). For each \(u \in V \), define

\[
T(u) = \text{size of smallest vertex cover of the subtree rooted at } u.
\]

We want \(T(r) \).

Recursive formulation: In figuring out \(T(u) \), the most immediate question is whether \(u \) is in the vertex cover. If not, then its children must be in the vertex cover. Let \(C(u) \) be the set of \(u \)'s children, and let \(G(u) \) be its grandchildren. Then

\[
T(u) = \min \left\{ 1 + \sum_{w \in C(u)} T(w) \middle| C(u) \right\} + \sum_{z \in G(u)} T(z)
\]

where \(|C(u)| \) is the number of children of node \(u \). The first case includes \(u \) in the vertex cover; the second case does not.

Algorithm:

Pick any root node \(r \)

dist[\cdot] = \text{BFS(tree, } r)\]

for all nodes \(u \), in order of decreasing dist:

\(S_1 = 1 \) (option 1: include \(u \) in the vertex cover)

for all \((u, w) \in E \) such that dist[\(w \)] = dist[\(u \)] + 1: (ie. \(w \) = child of \(u \)):

\(S_1 = S_1 + T[w] \)

\(S_2 = 0 \) (option 2: don’t include \(u \) in the vertex cover)

for all \((u, w) \in E \) such that dist[\(w \)] = dist[\(u \)] + 1: (ie. \(w \) = child of \(u \)):

\(S_2 = S_2 + 1 \)

for all \((w, z) \in E \) such that dist[\(z \)] = dist[\(w \)] + 1: (ie. \(z \) = grandchild of \(u \)):

\(S_2 = S_2 + T[z] \)

\(T[u] = \min\{S_1, S_2\} \)

return \(T[r] \)

Running time: The work done at each node is proportional to its number of grandchildren, \(|G(u)| \). Since \(\sum_u |G(u)| \leq |V| \) (each node has at most one grandparent), the overall work done is linear.

Subproblem: For any integers \(0 \leq u \leq v \) and \(0 \leq j \leq k \), define \(T(u, j) \) to be true if it is possible to make change for \(u \) using at most \(j \) coins with denominations chosen from \(x_1, x_2, \ldots, x_n \). The answer we want is \(T(v, k) \).

Recursive formulation: Notice that

\(T(u, j) \) is true if and only if (either \(u = 0 \) or \(T(u - x_i, j - 1) \) is true for some \(i \)).

For consistency, set \(T(0, j) \) to true for all \(j \) and \(T(u, 0) \) to false for \(u > 0 \).

Algorithm:

for \(j = 0 \) to \(k \):

\(T[0, j] = \text{true} \)

for \(u = 1 \) to \(v \):

\(T[u, 0] = \text{false} \)
for $j = 1$ to k:
 for $u = 1$ to v:
 $T[u,j] = \text{false}$
 for $i = 1$ to n:
 if $u \geq x_i$ and $T[u - x_i,j - 1]$:
 $T[u,j] = \text{true}$
return $T[v,k]$

Running time: The table has size $k \times v$ and each entry takes $O(n)$ time to fill; therefore the total running time is $O(nkv)$.