Solutions to Homework Six

1. Another scheduling problem. Here’s the idea: do the quickest jobs first.

Sort the t_i
Output $1 \leq i \leq n$ in increasing order of t_i

The total time taken is $O(n \log n)$.

To show that this is optimal, we’ll prove a basic property of this scheduling problem.

Claim. Suppose $t_i < t_j$. Consider any schedule in which job j is done before job i. Then, swapping jobs i and j (and leaving the rest of the schedule unchanged) yields a smaller total waiting time.

Proof. Let S be the schedule in which j is done before i. Divide this schedule into three phases: (1) jobs before j, (2) jobs starting with j but before i, and finally (3) the remaining jobs starting with i.

The swap yields a new schedule, call it S', in which phase-one jobs and phase-three jobs have exactly the same waiting times as in S. But the jobs in the middle phase have their waiting times shrunk by $t_j - t_i$.

Therefore, S' is better than S. □

2. Two-coloring a graph. Some observations about two-coloring a graph G:

- Different connected components of G can be handled separately.
- Fix any vertex u. If there is a valid two-coloring in which u is **white**, then there is also a valid two-coloring in which it is **black** (just flip all colors in u’s connected component).
- Therefore, if G is two-colorable, then in each connected component, we can pick any node and color it **black**; thereafter the colors of the other nodes in that component are fully determined.

The algorithm:

1. Find the connected components of G.
2. For each connected component C:
 - Pick a vertex in that component.
 - Run breadth-first search starting at that vertex (this search will be limited to C).
 - Color all nodes in C at even distance **black** and all nodes at odd distance **white**.
3. For each edge in G:
 - If the endpoints have the same color, halt and output “not two-colorable”.
 - Output “two-colorable”.

Each of the steps (1)–(3) is linear-time, and thus the overall running time is linear.

Justification: Suppose, first, that G is two-colorable. Then, by the remarks above, the algorithm will discover a valid coloring, and this will be validated in step (3).

Conversely, if G is not two-colorable, then whatever coloring is obtained in steps (1)–(2) is necessarily invalid. This will be detected in step (3).

4. **Non-optimality of greedy set cover.** There is a counterexample in Section 5.4 of the textbook.

5. (a) One way Alice can choose a set of guests \(S \) is to first let \(S \) contain all \(n \) people, and then eliminate any people that absolutely have to be eliminated.

Which people are these? _Anybody with less than five friends._

This suggests a simple algorithm:

\[
\text{Initialize } S \text{ to contain all } n \text{ people} \\
\text{While } S \text{ contains a person } p \text{ with fewer than five friends in } S: \\
\quad \text{Remove } p \text{ from } S
\]

Claim. Let \(S^* \) be any optimal solution. Then throughout the execution of the algorithm, \(S^* \) is always contained in \(S \).

Proof. Our initial setting of \(S \) certainly contains \(S^* \). And any person \(p \) we subsequently eliminate has less than five friends in \(S \) (and thus less than five friends in \(S^* \)) and so cannot be in \(S^* \). Since we never eliminate a person in \(S^* \), set \(S \) always contains \(S^* \).

Moreover, every node in the final set \(S \) it has at least five neighbors in \(S \). Therefore \(S = S^* \).

(b) Here’s a simple linear-time implementation. The set \(S \) is maintained as a Boolean array \(\text{invite} \).

\[
Q = (\text{empty queue}) // \text{people to be eliminated} \\
\text{For each person } p:\ \\
\quad \text{invite}[p] = \text{true} // \text{Boolean array that indicates who is invited} \\
\quad \text{set friends}[p] \text{ to the the number of friends of } p \\
\quad \text{if friends}[p] < 5: \\
\quad \quad \text{inject}(Q, p) // \text{mark } p \text{ for elimination} \\
\quad \quad \text{invite}[p] = \text{false}
\]

While \(Q \) is not empty:

\[
p = \text{eject}(Q) \\
\text{for all friends } q \text{ of } p:
\]
friends[q] = friends[q] - 1
if friends[q] < 5 and invite[q] = true:
 inject(Q, q)
 invite[q] = false

Every person \(p \) to be eliminated ends up in the queue at some stage. When \(p \) is pulled off the queue, it is officially eliminated, in the sense that its neighbors have their friend-count decremented. Moreover, \(p \) is only added to the queue once; thereafter \(\text{invite}[p] \) becomes false.

The form of the input is rather like the adjacency list of a graph. Setting the \(\text{friends} \) array is like computing the degree of every node in that graph: linear time. Likewise, the innermost loop is like iterating through the neighbors of a specific node in the graph.

Thus the overall running time is the same as that of a basic graph search algorithm like DFS, that is, \(O(n + m) \), where \(m \) is the number of friend-pairs (edges).

6. A natural approach: on your first tank of gas, go as far as possible within \(M \) miles; that is, go up to the largest \(m_i \leq M \). On your second tank, go to the largest \(m_j \) with \(m_j - m_i \leq M \), and so on.

Here’s the pseudocode.

```plaintext
i = 1 // index of current position
while i < n:
    j = i // index of next gas stop
    while j < n and m_{j+1} - m_i \leq M:
        j = j + 1
    output ‘‘stop at \( m_j \)’’
    i = j
```

The running time is \(O(n) \): the indices \(i, j \) each do a single pass through the array of mile-posts.

To see why this strategy is optimal, let \(S_1, S_2, \ldots \) denote the mileage posts at which we end up stopping. For instance, if our third stop is at \(m_{10} \), then \(S_3 = m_{10} \).

Let \(T_1, T_2, \ldots \) be any other valid solution: any sequence of stops that doesn’t run out of gas. We’ll show that our solution \((S_k)\) is at least as good as \((T_k)\).

Claim. \(S_k \geq T_k \) for all \(k \).

Proof. We can prove this by induction on \(k \). It certainly holds for \(k = 1 \), by the way in which we choose the first stopping point.

So let’s say it holds up to the first \(k \) stops (that is, \(S_k \geq T_k \)), and let’s look at \(k + 1 \). Since \(T_{k+1} - T_k \leq M \) and \(S_k \geq T_k \), it follows that \(T_{k+1} - S_k \leq M \). By definition, \(S_{k+1} - S_k \) is the longest stretch starting at \(S_k \) that is at most \(M \) miles long. Therefore, \(S_{k+1} \geq T_{k+1} \).

7. Given a set of intervals, let’s sort them by ending-point so that we have \([\ell_1, u_1], \ldots, [\ell_n, u_n]\) where \(u_1 \leq u_2 \leq \cdots \leq u_n \).

Here’s the idea: we need at least one point in the very first interval, \([\ell_1, u_1]\). We might as well take this point to be \(u_1 \), because it touches as least as many other intervals as any other point in \([\ell_1, u_1]\). Then we can recurse.

Let \(I \) be the set of \(n \) intervals

Let \(C = \{ \} \) (selected points)

While \(I \) is not empty:

 Find the smallest \(u_i \) in \(I \)
 Add \(u_i \) to \(C \)
 Remove intervals containing \(u_i \) from \(I \)
To understand why this greedy strategy is optimal, we show that there is always an optimal solution in which the leftmost point is \(u_1 \). With this in place, we can then remove every interval that \(u_1 \) touches, leaving a smaller version of the original problem; and recurse.

Claim. Let \(x_1 < x_2 < \cdots < x_m \) be any solution, that is, a set of points that touches all the intervals. Then swapping \(x_1 \) with \(u_1 \) also yields a solution.

Proof. The leftmost point, \(x_1 \), must satisfy \(x_1 \leq u_1 \); otherwise none of the points touches \([\ell_1, u_1]\).

The intervals touched by \(x_1 \) all start before \(x_1 \), and thus before \(u_1 \); and they end after \(u_1 \), since \(u_1 \) is the leftmost ending point. Therefore, any interval touched by \(x_1 \) is also touched by \(u_1 \), and the substitution \(x_1 \rightarrow u_1 \) also generates a valid solution. \(\square \)

The greedy algorithm can be implemented in time \(O(n \log n) \); do you see how?