1. **Textbook problem 5.1.** The graph has two minimum spanning trees, of cost 19. There are several different orders in which Kruskal might potentially add the edges, for instance:

 Edge one side of cut
 ------- ---------------
 A − E {A}
 E − F {A, E}
 B − F {A, E, F}
 F − G {A, B, E, F}
 G − H {H}
 C − G {C}
 D − G {D}

2. **Textbook problem 5.4.**

 Claim. A graph G with k connected components has at least $|V| - k$ edges.

 Proof. Take any such $G = (V, E)$ and run an iterative trimming procedure on it: “while there is a cycle, remove an edge from the cycle”. The result is a forest of k trees; say they contain n_1, n_2, \ldots, n_k nodes respectively (where $n_1 + \cdots + n_k = |V|$). Then they must contain $n_1 - 1, \ldots, n_k - 1$ edges respectively, for a total of $|V| - k$. Therefore G must originally have had at least this many edges. \qed

3. **Another characterization of trees.**

 Claim. Let G be any undirected graph with n nodes, $n - 1$ edges, and no cycles. Then G is a tree.

 Proof. Suppose G has k connected components, containing n_1, n_2, \ldots, n_k nodes, respectively, where $n_1 + \cdots + n_k = n$. Each component is acyclic and connected and is therefore a tree; hence the component with n_i nodes must have $n_i - 1$ edges, implying that the total number of edges in G is exactly $(n_1 - 1) + (n_2 - 1) + \cdots + (n_k - 1) = n - k$. But we know there are $n - 1$ edges; thus $k = 1$, so G is connected and therefore a tree. \qed

4. **Another greedy approach to MST.**

 (a) **Claim.** Pick any cycle in a graph, and let e be the heaviest edge in that cycle. Then there is a minimum spanning tree that does not contain e.

 Proof. Call the cycle C. We’ll show that for any spanning tree T that contains e, there is another spanning tree T' which doesn’t contain e and whose weight is at most that of T.

 Remove e from T; this splits T into two subtrees, T_1 and T_2. Since e crosses the cut (T_1, T_2), the cycle C must contain at least one other edge e' across this cut. Let $T' = T - e + e'$. T' is connected and has $|V| - 1$ edges; therefore it is a spanning tree. And since $w(e) \geq w(e')$, the weight of T' is at most that of T. \qed

 (b) Let G_t be what remains of the graph after t iterations of the loop. Part (a) tells us that for any t, we have $\text{MST}(G_{t+1}) = \text{MST}(G_t)$, where $\text{MST}(\cdot)$ denotes the cost of the minimum spanning tree. By induction, we therefore have $\text{MST}(G_T) = \text{MST}(G)$, where G_T is the final graph. This G_T has no remaining cycles and is therefore a spanning tree, whereby it must be a minimum spanning tree of G.

 (c) G has a cycle containing $e = \{u, v\}$ if and only if there is a path from u to v in $G - e$.

 • explore($G - e, u$).
 • return visited[v].
(d) Sorting takes $O(|E| \log |E|)$ and there are $|E|$ iterations of the loop, each of which takes time $O(|V| + |E|)$. Since we’re assuming the graph is initially connected, we have $|V| \leq |E| + 1$, so the total time is $O((|V| + |E|)|E|) = O(|E|^2)$.

5. **Updating an MST when an edge weight is increased.** For graph $G = (V, E)$ with edge weights $w(\cdot)$, you already have a minimum spanning tree $T = (V, E')$. Then the weight of an edge e increases. How should T be updated?

 Case 1: $e \not\in E'$. Nothing to do.

 Case 2: $e \in E'$. In this case, remove e from T; this divides the tree in two, with vertices V_1 on one side and $V_2 = V - V_1$ on the other. Find the lightest edge (in E) between V_1 and V_2 and add it in. The total time taken is $O(|V| + |E|)$.
