Solutions to Homework Four

1. Algorithm A has running time

$$T_A(n) = 3T_A(n/3) + O(n),$$

to which we can apply the general recurrence formula, giving $T_A(n) = O(n \log n)$.

Algorithm B has running time

$$T_B(n) = T_B(n-1) + O(n).$$

To solve this one, let’s expand it out:

$$T_B(n) = T_B(n-1) + n = T_B(n-2) + (n-1) + n = T_B(n-3) + (n-2) + (n-1) + n$$

and so on. Eventually we get $T_B(n) = T_B(1) + (2 + 3 + 4 + \cdots + n) = O(n^2)$.

Algorithm C has running time

$$T_C(n) = 2T_C(n/3) + O(n^2),$$

for which the general recurrence formula gives $T_C(n) = O(n^2)$.

Algorithm D has running time

$$T_D(n) = 5T_D(n/4) + O(n),$$

which, by the general recurrence formula, comes out to $T_D(n) = n^{\log_4 5}$.

Of the four, Algorithm A is the quickest.

2. Let $L(n)$ be the number of lines. Then $L(n) = 3L(n/2) + 1$ so that $L(n) = O(n \log_3 2)$.

3. Textbook problem 2.24(a,b).

 (a) Here’s the quicksort procedure.

   ```java
   function quicksort(S[1 \cdots n])
   Input: array of numbers
   Output: sorted array

   If $n \leq 1$: return $S$
   Pick $v$ at random from $S$
   Split $S$ into three pieces:
   $S_L = \text{elements less than } v$
   $S_v = \text{elements equal to } v$
   $S_R = \text{elements greater than } v$
   Return quicksort($S_L$) $\circ S_v$ $\circ$ quicksort($S_R$)
   ````

 (b) Each iteration through the recursive procedure takes linear time, but the number of recursive calls varies according to the particular split elements chosen.

 A particularly unlucky scenario is when the elements of S are distinct, and the split element is always the largest element of S. Then S_R is always empty, S_v contains a single element, and S_L has everything else. We thus get a running time

 $$T(n) = T(n-1) + O(n),$$

 which works out to $O(n^2)$.

4. Randomized binary search.
(a) Here’s the algorithm, given an array $S[1 \ldots n]$ and a number x.

Let $\ell = 1, r = n$ // current search interval is $[\ell, r]$

While $r \geq \ell$:
 Pick p at random from $\{\ell, \ell + 1, \ldots, r\}$
 If $S[p] = x$: halt and output ‘yes’
 If $S[p] > x$: let $r = p - 1$
 If $S[p] < x$: let $\ell = p + 1$
Output ‘no’

(b) Let $T(n)$ denote the expected running time on an array of size n. On any given iteration, a constant amount of work is done, and there is a $1/2$ probability that the randomly chosen position p lies in the central half of the search interval $[\ell, r]$. If this happens, the search interval shrinks to at most $3/4$ its size on that iteration. If not, then at the very worst the interval doesn’t shrink at all. We can thus write

$$T(n) \leq \frac{1}{2} T\left(\frac{3n}{4}\right) + \frac{1}{2} T(n) + O(1)$$

which means $T(n) \leq T((3/4)n) + O(1)$ and thus $T(n) = O(\log n)$.

5. Textbook problem 2.23.

(a) Solving the problem in $O(n \log n)$ time.

Suppose we divide array A into two halves, A_L and A_R. Then:

A has a majority element $x \iff x$ appears more than $n/2$ times in A
$\iff x$ appears more than $n/4$ times in either A_L or A_R (or both)
$\iff x$ is a majority element of either A_L or A_R (or both)

This suggests a divide-and-conquer algorithm:

function majority ($A[1 \ldots n]$)
 if $n = 1$: return $A[1]$
 let A_L, A_R be the first and second halves of A
 M_L = majority(A_L) and M_R = majority(A_R)
 if M_L is a majority element of A:
 return M_L
 if M_R is a majority element of A:
 return M_R
 return ‘no majority’

Running time: $T(n) = 2T(n/2) + O(n) = O(n \log n)$.

(b) A linear-time algorithm.

function majority ($A[1 \ldots n]$)
 x = prune(A)
 if x is a majority element of A:
 return x
 else:
 return ‘no majority’

function prune ($S[1 \ldots n]$)
 if $n = 1$: return $S[1]$
 if n is odd:
 if $S[n]$ is a majority element of S: return $S[n]$
 $n = n - 1$
$S' = []$ (empty list)
for $i = 1$ to $n/2$:
return prune(S')

Justification: We’ll show that each iteration of the prune procedure maintains the following invariant: if x is a majority element of S then it is also a majority element of S'. The rest then follows.

Suppose x is a majority element of S. In an iteration of prune, we break S into pairs. Suppose there are k pairs of Type One and l pairs of Type Two:
- Type One: the two elements are different. In this case, we discard both.
- Type Two: the elements are the same. In this case, we keep one of them.

Since x constitutes at most half of the elements in the Type One pairs, x must be a majority element in the Type Two pairs. At the end of the iteration, what remains are l elements, one from each Type Two pair. Therefore x is the majority of these elements.

Running time. In each iteration of prune, the number of elements in S is reduced to $l \leq |S|/2$, and a linear amount of work is done. Therefore, the total time taken is $T(n) \leq T(n/2) + O(n) = O(n)$.

6. Closest pair.

(a) We know that any two points in L are at distance $\geq d$ from each other. Now consider any $d \times d$ square, and divide it into four smaller squares of side length $d/2$:

Each smaller square can contain at most one point of L, since any two points in the smaller square are at distance $\leq d/\sqrt{2}$. Therefore the $d \times d$ square contains at most four points of L.

(b) To show correctness of the algorithm, we only need to show that if the closest pair p, q has $p \in L$ and $q \in R$, then this pair will be found.

So assume this is the case. By construction, the distance between $p = (x_p, y_p)$ and $q = (x_q, y_q)$ is less than d. Suppose $y_p < y_q$ (the other case is symmetric). Then the configuration is as shown below:
In the picture, B_L and B_R are squares of side-length d whose top-right and top-left corners, respectively, are at the point (v, y_p). Since p, q are within distance d of each other, point q must lie within B_R. We know from part (a) that B_L and B_R each contain at most four points. In short, y_q must be one of the 7 y-values closest to y_p.

(c) The steps involved in solving the problem on n points are:

- Finding the median x value: $O(n)$.
- Recursing on two subproblems of size $n/2$: this is $2T(n/2)$.
- Discarding some points: $O(n)$.
- Sorting y values: $O(n \log n)$.
- Iterating through a list of y values and doing seven computations for each: $O(n)$.

This gives $T(n) = 2T(n/2) + O(n \log n)$.