Fully Homomorphic Encryption from the ground up

Daniele Micciancio
(UC San Diego)

Eurocrypt 2019
(Fully Homomorphic) Encryption

• Encryption: used to protect data at rest or in transit

 \[\text{Enc}(m) \]

• Fully Homomorphic Encryption: supports arbitrary computations on encrypted data

 \[\text{Enc}(m) \]
 \[\text{Enc}(F(m)) \]
FHE Timeline

- Concept originally proposed by Rivest, Adleman, Dertouzos (1978)
- Gentry’s breakthrough (2009)
 - First candidate solution
 - Bootstrapping technique
- Much subsequent work (2010-2019 …)
 - Basing security on standard (lattice) assumptions [BV11,B12,AP13,GSW13,BV14,…]
 - Efficiency improvements [GHS12,BGH13,AP13/14,DM15,CP16,CGGI16/17,CKKS17,MS18,…]
 - Implementations: HElib, SEAL, PALISADE, FHEW, TFHE, HeaAn, Λολ, NFLlib, …
Outline

• FHE: background and sample applications
• Lattice Cryptography
 – Key properties of lattice cryptography that make it so useful to build FHE and other applications
• Generic FHE construction
 – Symmetric Encryption
 – Public Key Encryption
 – Linearly Homomorphic Encryption
 – Fully Homomorphic Encryption
FHE applications

- Direct applications:
 - Secure outsourcing of computation
- Powerful tool: “Cryptographic Pantograph”
 - FHE [Gentry09]
 - (Indistinguishability) Obfuscation [GGHRSW13]
 - Functional Encryption [GKPVZ13]
 - Correlation Intractable Hash Functions [PS19], [CCHLRRW19]
Sample Application 1

- **(Indistinguishability) Obfuscation**
 - Obf: Program \rightarrow Program
 - Correctness: $\text{Obf}[P](x) = P(x)$
 - Security: $P_0(x) = P_1(x) \rightarrow \text{Obf}[P_0] \sim \text{Obf}[P_1]$
Bootstrap Obfuscation

- Bootstrapping Obfuscation using FHE
 - Obf’: obfuscation scheme for simple/small P’
- Obf[P] = (Enc(P),Obf’[Dec(.)])
 - (Enc,Dec,Eval)←FHE.KeyGen
- Obf[P](x) = Dec(e)
 - Obf’[Dec(.)] (Eval(Enc(P),x))
 = Dec(Enc(P(x))) = P(x)

- Actual scheme is a bit more complex:
 - encrypt/evaluate P twice, under two different FHE keys
 - check consistency before decryption
Sample Application 2

- **Correlation Intractable Hash Functions**
 - Hash function $H(x)$, Relation $R = \{(x,f(x)) : x\}$
 - Security: Hard to find x such that $R(x,H(x))$
- $H=“Random oracle”$ is “trivially” secure

- Applications:
 - Fiat-Shamir Signatures in the Standard Model
 - Remove interaction in public coin protocols
 - Non-Interactive Zero-Knowledge
Bootstrapping Correlation Intractability

- H': CI Hash function for simple relation
 \[R(x,y) = "y=\text{Dec}(x)" \]
 for some $\text{Dec} \leftarrow \text{FHE.KeyGen}$

- H: CI Hash function for arbitrary P
 - $(\text{Enc},\text{Dec},\text{Eval}) \leftarrow \text{FHE.KeyGen}$
 - $C = \text{Enc}(P)$
 - $H(x) = H'(\text{Eval}(C,x))$

- Security:
 - Assume $H(x) = P(x)$
 - Let $c = \text{Eval}(C,x) = \text{Enc}(P(x))$
 - Then $H'(c) = H(x) = P(x) = \text{Dec}(c)$
Lattice cryptography

- Lattices: regular sets of vectors in n-dim space

- Many attractive features:
 - Post-Quantum secure candidate
 - Simple, fast and easy to parallelize
 - Versatile (FHE and much more)
Why Lattice Cryptography?

• Lattices → Encryption
 - weak linear homomorphic properties
 - simple (linear) decryption algorithm
 - circular secure: $\text{Enc}_s(s)$ does not leak s

• This is enough to obtain
 - multiplication by arbitrary constants
 - multiplications between ciphertexts
 - fully homomorphic encryption
Learning With Errors (LWE)

- **LWE function family:**
 - **Key:** \(A \in \mathbb{Z}_q^{nxm} \)
 - \(\text{LWE}_A(s,e) = As + e \pmod{q} \)
 - Small \(|e| \leq \beta = O(\sqrt{n})\)
 - \(q, m = \text{poly}(n) \)
 - Injective version of Ajtai’s SIS function

- **Regev (2005): assuming quantum hard lattice problems**
 - \(\text{LWE}_A \) is one-way: Hard to recover \((s,e)\) from \([A,b]\)
 - \(b = \text{LWE}_A(s,e) \) is indistinguishable from uniform over \(\mathbb{Z}_q^m \)
 - [BLPRS13] hard under classical reductions
Encrypting with LWE

- Idea: Use $b=LWE_A(s,e)$ as a one-time pad
- Private key encryption scheme:
 - secret key: $s \in \mathbb{Z}_q^n$,
 - message: $m \in \mathbb{Z}^m$
 - encryption randomness: $[A,e]$
 - $E_s(m; [A,e]) = [A,b+m]$

- [BFKL93],[GRS08]
 - Learning Parity with Noise (LPN): $q=2$
 - If LWE_A is one-way, then $b=As+e$ is pseudo-random
- Regev LWE: $q \rightarrow \text{poly}(n)$
Noisy Decryption

• $E_s(m;[A,e]) = [A,b+m]$ where $b = As + e$

• Decryption:
 – $D_s([A,b+m]) = (b+m) - As = m + e \mod q$

• Low order bits of m are corrupted by e

• Fix: scale m, and round:
Weak Linear Homomorphism

- \([A_1, A_1s + e_1 + m_1] + [A_2, A_2s + e_2 + m_2]\]
 \[= [(A_1 + A_2), (A_1 + A_2)s + (e_1 + e_2) + (m_1 + m_2)]\]

\(E_s(m; \beta)\): encryption of m with error \(|e| < \beta\)

- \(E_s(m_1; \beta_1) + E_s(m_2; \beta_2) \subseteq E_s(m_1 + m_2; \beta_1 + \beta_2)\)
Circular Security

- $E_s(m; [A,e]) = [A,b+m]$, where $b = As + e$
- $D_s([A,b+m]) = (b+m) - As = m + e$
- $D_s([-A,0]) = 0 + As = As$

- Easy to compute encryptions of (linear functions of) the secret key s!

- Random encryptions:

 $[-A,0] + E_s(0; \beta) = E_s(As; \beta)$
Decryption is also linear

- $D_s(A,b) = b - As = m + e$
- Linear in the ciphertext (A,b)
- Linear in the secret key $s' = (-s, 1)$
 - $D_{s'}(A,b) = [A,b]s' = m + e$
 - $D_{cs'}(A,b) = [A,b](cs') = cm + ce$
- Remark:
 - Only approx. decryption is linear
 - Exact decryption involves non-linear rounding
Operations on Ciphertexts

- **Add:** \(E(m_1; \beta_1) + E(m_2; \beta_2) \subseteq E(m_1 + m_2; \beta_1 + \beta_2) \)
- **Neg:** \(-E(m; \beta) = E(-m; \beta)\)
- **Mul:** \(c \cdot E(m; \beta) = E(c \cdot m; c \cdot \beta) \)
- **Const:** \([0, m] \in E(m; 0) \)
- **Key:** \([-A, 0] \in E(A \cdot s; 0) \)

Weak linear homomorphic properties:
- can perform a limited number of additions and multiplications by small constants
- decryption is linear in the secret key \(s' = (-s, 1) \)
- circular security: \(E(A \cdot s) \) does not leak \(s \)
Public Key Encryption

- Public Key:
 \[[a_1, b_1] = E_s(0), \ldots, [a_n, b_n] = E_s(0)\]

- Encrypt(m): \((\Sigma_i r_i \cdot [a_i, b_i]) + (0, m)\)
 \(- E_s(0) + \ldots + E_s(0) + E_s(m; 0) = E_s(m)\)

- Decrypt normally using secret key

- [Regev05] LWE Public Key Encryption

- [Rothblum11]: any weakly linear homomorphic encryption implies public key encryption
Multiplication by any constant

- $E'[m] = (E[m], E[2m], E[4m], ..., E[2^{\log(q)}m])$
- Multiplication by $c \in \mathbb{Z}_q$:
 - Write $c = \sum_i c_i 2^i$, where $c_i \in \{0, 1\}$
 - Compute $\sum_i c_i E[2^i m] = E[\sum_i c_i 2^i m] = E[cm]$
- $cE'[m] = E[cm]$
- We can also compute $E'[cm]$:
 \[
 c^*E'[m] = (cE'[m], (2c)E'[m], ..., (2^{\log_q c})E'[m]) \\
 = (E[cm], E[(2c)m], ..., E[(2^{\log_q c})m]) = E'[cm]
 \]
Multiplication via Homomorphic Decryption

• Idea:
 - Encryption $E(m) = (a, as + e + m)$ is linearly homomorphic
 - Decryption $D(a, b) = b - as = m + e$ is linear in $s' = (-s, 1)$
 - We can decrypt homomorphically using an encryption of s'

• Details
 - Given: $E(m) = (a, b)$ and $E'(s') = (E'(-s), E'(1))$
 - Compute $E(m) * E'(s') = a * E'(-s) + b * E'(1) = E(m)$

• More interesting:
 - Given $E(m)$ and $E'(cs')$
 - Compute $E(m) * E'(cs') = E(cm)$
Homomorphic “decrypt and multiply”

- $E''(c) = E'(cs') = E'("E(m)\rightarrow c*m")$
- $E''(c) = \{E(\alpha_i c)\}_i$ for some $\alpha_i(s)$
- Homomorphiofic Properties:
 - $E''(m_1) + E''(m_2) = E''(m_1 + m_2)$
 - $E''(m_1)\cdot E''(m_2)$
 $= \{E(\alpha_i m_1)\cdot E''(m_2)\}_i$
 $= \{E(\alpha_i m_1 \cdot m_2)\}$
 $= E''(m_1 \cdot m_2)$
FHE

- $E''(m_0)+E''(m_1) = E''(m_0+m_1)$
- $E''(m_0)*E''(m_1) = E''(m_0*m_1+e)$

- Not quite a FHE yet:
 - E'' can evaluate any arithmetic circuit
 - But noise grows with computation

- Effectively:
 - can only evaluate small circuits / branching programs

- Bootstrapping: FHE(NC1) \rightarrow FHE(PTIME)
Bootstrapping FHE

- Let $c = \text{Enc}_s(m^*(q/2)+e)$
- $f_c(s) = \text{msb(Dec}_s(c))^\ast(q/2) = m^\ast(q/2)$
- Eval f_c homomorphically on $\{s\} = \text{Enc}_s(s)$
- $f_c(\{s\}) = \{f_c(s)\} = \{\text{msb(Dec}_s(c))\}$
 $\quad = \{m^\ast(q/2)\} = \text{Enc}_s(m^\ast(q/2))$
- Output noise depends on $	ext{msb}^\ast\text{Dec}_s\{s\}$, but not on e
Composing FHE computations

- Output noise depends on Dec_s, but not c.
- $\text{Enc}(m^*(q/2); \frac{q}{4}) \rightarrow \text{Enc}(m^*(q/2); \beta \ll \frac{q}{4})$
- Can compose arbitrarily many gates, while keeping noise small
Requirements

• Correctness:
 – Need “exact” decryption $\text{Dec}(\text{Enc}(m)) = m$
 – Achieved by scaling and rounding
 $\text{round}((q/2)m + e) = \text{msb}((q/2)m + e)$

• Circular security:
 – Need to encrypt s under E''_s
 – Circular security of $E''_s(s)$
 still an open problem
 – Not needed for Leveled FHE
Summary

• Lattice (LWE) encryption E
 - Circular secure: $E_s(s)$
 - Linear approx. decryption $D(s)$
 - Transform $E \rightarrow E''$ (provably secure encryption)
 E'' can evaluate arbitrary (low depth) function

• Bootstrapping
 - Nonlinear (but still low depth) rounding function
 - Can be computed by E''
 - Open problem: circular security of $E''_s(s)$
Homomorphic Decrypt & Round

- Dec(s[i],[a[i],b]) = round(b-\sum a[i]s[i])
 = msb((q/4)+b-\sum a[i]s[i])

- Assume for simplicity s[i] \in \{0,1\}

- Write all numbers in binary:
 - b+(q/8)=\sum j 2^j b_j, -a[i]=\sum j 2^j a_{j[i]}, where b_j,a_{j[i]}\in\{0,1\}

- Want to compute and round
 - R = \sum j 2^j(b_j+\sum a_{j[i]}s[i])
 - Output most significant bit msb(R) = (2R/q) mod 2
Homomorphic Decryption

- Dec(s[i],[a[i],b]) = msb(∑...s[i])

- Homomorphic in s:
 - Enc(s[1]),.....,Enc(s[n]) → msb(∑)
Homomorphic Decryption

- $\text{Dec}(s[i],[a[i],b]) = \text{msb}(\sum \ldots s[i])$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>...</th>
<th>...</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>0</td>
<td>...</td>
<td>...</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>1</td>
<td>...</td>
<td>...</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>+</td>
<td>1</td>
<td>...</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Homomorphemic in s:
- Enc($s[1]$),..,Enc($s[n]$) \rightarrow msb(Σ)
Homomorphic Decryption

- \(\text{Dec}(s[i],[a[i],b]) = \text{msb}(\sum...s[i]) \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>...</th>
<th>...</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>0</td>
<td>...</td>
<td>...</td>
<td>s[1]</td>
<td>s[1]</td>
<td>0</td>
<td>s[1]</td>
</tr>
<tr>
<td>+</td>
<td>s[2]</td>
<td>...</td>
<td>...</td>
<td>s[2]</td>
<td>0</td>
<td>s[2]</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>+</td>
<td>s[n]</td>
<td>...</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>s[n]</td>
<td>s[n]</td>
</tr>
</tbody>
</table>

- Homomorphic in \(s \):
- \(\text{Enc}(s[1]),...,\text{Enc}(s[n]) \rightarrow \text{msb}(\sum) \)
Homomorphic Decryption

- \(\text{Dec}(s[i], [a[i], b]) = \text{msb}(\sum \ldots s[i]) \)
Cryptographic Accumulator

- \(\text{ACC}[v] \) holds values \(v \in \{0, \ldots, N=2(n+1)\} \)
- **Local Operations:**
 - Increment: \(\text{ACC}[v] \rightarrow \text{ACC}[v+1] \)
 - Half: \(\text{ACC}[v] \rightarrow \text{ACC}[v/2] \)
 - Mod2: \(\text{ACC}[v] \rightarrow \text{ACC}[v \mod 2] \)
- **Accum:** \(\text{ACC}[v], E''[s \in \{0,1\}] \rightarrow \text{ACC}[v+s] \)
- **Extract:** \(\text{ACC}[v] \rightarrow \text{Enc}(v=1) \)
ACC local operations

- [AP14] $\text{ACC}[v;\beta] = (c[0],\ldots,c[N])$ where
 - $c[v]$ = $\text{Enc}(1;\beta_v)$, $c[u]$ = $\text{Enc}(0;\beta_u)$
 - $\beta = \sum_i \beta_i$

- $f(\text{ACC}[v;\beta]) = \text{ACC}[f(v);\beta]$
 - $c'[v] = \sum \{ c[u] \mid f(u) = v \}$
 - $\sum \{} = \text{Enc}(0;0) = [0,0]$

- Increment, Half, Mod2: choose appropriate f

- Extract(ACC) = $c[1]$
Accumulate

- Accumulate: $\text{ACC}[v] + E''[s] \rightarrow \text{ACC}[v+s]$
- Compute $A_0 = \text{ACC}[v], A_1 = \text{ACC}[v+1]$
- Select:
 - $\text{ACC}[v+s] = A_s = A_0*(1-E''[s]) + A_1*E''[s]$
- All operations supported by our E''
Credits

- Most techniques used in this construction proposed independently in other works
 - Linearity of lattice cryptography [BM97],[LMPR08]
 - Multiplication gadget matrix (1,2,4,...) [Ajtai99],[BV]++
 - Approximate decryption [CKKS17] HEAAN
 - E'': essentially equivalent to [GSW13]
 - Accumulators [AP14]. See also [DM15],[CGGI16].

- Only new technique: bootstrapping via schoolbook addition algorithm
Concluding remarks

• Simple HE from basic building blocks
 – Regev LWE: mod-q variant of [BFKL93],[GRS08]
 – “CryptoComputing for NC1” [SYY99]

• FHE = Simple HE + Bootstrapping [G09]
 – Main efficiency bottleneck in practice
 – Main theoretical open problem: circular security

• Other applications? Yes!
 – Translate between FHE and MPC [CLOPS13],[BGG18],
 – Homomorphic Commitments [GSW13],[PS19]
 – Homomorphic Secret Sharing [BKS19]
 – Symmetric Crypto with algebraic structure [AMPR19]
References

- [BFKL93] Blum, Furst, Kearns, Lipton
- [BM97] Bellare, Micciancio
- [SYY99] Sander, Young, Yung
- [LMPR08] Lyubashevsky, Micciancio, Peikert, Rosen
- [GRS08] Gilbert, Robshaw, Seurin
- [G09] Gentry
- [BV11,14] Brakerski, Vaikuntanathan
- [CLOPS13] Choudhury, Loftus, Orsini, Patra, Smart
- [GGHRSW13] Garg, Gentry, Halevi, Raykova, Sahai, Waters
- [GKPVZ13] Goldwasser, Kalai, Popa, Vaikuntanathan, Zeldovich
- [GSW13] Gentry, Sahai, Waters
- [BLPRS13] Brakerski, Langlois, Peikert, Regev, Stehle
- [AP14] Alperin-Sherif, Peikert
- [CGGI16/17] Chilotti, Gama, Georgieva, Izabachene
- [CKKS17] Cheon, Kim, Kim, Song
- [BGG18] Boura, Gama, Georgieva
- [CCHLRRW19] Canetti, Chen, Holmgren, Lombardi, Rothblum, Rothblum, Wichs
- [PS19] Peikert, Shiehian
- [BKS19] Boyle, Kohl, Scholl
- [AMPR19] Alamati, Montgomery, Patranabis, Roy
Thank You!

Questions?