The Number of Partitions with no k-Sequences

Daniel M. Kane Robert C. Rhoades

Department of Mathematics
Stanford University

April 6th, 2013
Consider the following cellular automaton on \mathbb{Z}^2:

- Each cell is either On or Off at each time step.

If the plane is initialized with each cell On independently with probability p, what happens?
Cellular Automaton

Consider the following cellular automaton on \(\mathbb{Z}^2 \):

- Each cell is either On or Off at each time step.
- A cell that is On at one time step remains On at the next.

If the plane is initialized with each cell On independently with probability \(p \), what happens?
Consider the following cellular automaton on \mathbb{Z}^2:

- Each cell is either On or Off at each time step.
- A cell that is On at one time step remains On at the next.
- A cell that is Off at one time step turns On at the next if of the $4k$ cells forming a cross around it (k in each of the cardinal directions), more than k of them are On.
Cellular Automaton

Consider the following cellular automaton on \mathbb{Z}^2:

- Each cell is either On or Off at each time step.
- A cell that is On at one time step remains On at the next.
- A cell that is Off at one time step turns On at the next if of the $4k$ cells forming a cross around it (k in each of the cardinal directions), more than k of them are On.

If the plane is initialized with each cell On independently with probability p, what happens?
Behavior

Plane fills with On cells with probability 1.

- Find a $k \times k$ filled square.
Behavior

Plane fills with On cells with probability 1.

- Find a $k \times k$ filled square.
- Any On cell up to k layers out extends square.
Behavior

Plane fills with On cells with probability 1.
- Find a $k \times k$ filled square.
- Any On cell up to k layers out extends square.
- Probability that $m \times m$ square does not extend decays exponentially.
Behavior

Plane fills with On cells with probability 1.
- Find a $k \times k$ filled square.
- Any On cell up to k layers out extends square.
- Probability that $m \times m$ square does not extend decays exponentially.

How hard is it for this to happen?
Probability Model

- Let C_m be the event that there is an On cell on the m^{th} layer on a particular side.
- $\Pr(C_m) = 1 - (1 - p)^m$.

Require event: $A_k = \bigcap_{i=1}^\infty (C_i \cup \ldots \cup C_{i+k-1})$.

Namely, A_k is the event that we do not miss k of the C_i in a row.

Try to determine $\Pr(A_k)$.

This model is useful for answering questions like:
- If we have a finite grid, what's the probability that it fills with On cells?
- How long does a typical cell take to turn On?
Probability Model

- Let C_m be the event that there is an On cell on the m^{th} layer on a particular side.
- $\Pr(C_m) = 1 - (1 - p)^m$.
- Require event:
 $$A_k = \bigcap_{i=1}^{\infty} (C_i \cup \ldots \cup C_{i+k-1}).$$
 Namely, A_k is the event that we do not miss k of the C_i in a row.
- Try to determine $\Pr(A_k)$.

This model is useful for answering questions like:

- If we have a finite grid, what's the probability that it fills with On cells?
- How long does a typical cell take to turn On?
Probability Model

- Let C_m be the event that there is an On cell on the m^{th} layer on a particular side.
- $\Pr(C_m) = 1 - (1 - p)^m$.
- Require event:
 \[
 A_k = \bigcap_{i=1}^{\infty} (C_i \cup \ldots \cup C_{i+k-1}).
 \]

Namely, A_k is the event that we do not miss k of the C_i in a row.
- Try to determine $\Pr(A_k)$.

This model is useful for answering questions like:
- If we have a finite grid, what’s the probability that it fills with On cells?
- How long does a typical cell take to turn On?
Partitions

This model also has an interesting interpretation in terms of integer partitions.

- Recall: a partition, λ is a finite (unordered) multiset of positive integers (called parts).
This model also has an interesting interpretation in terms of integer partitions.

- Recall: a partition, λ is a finite (unordered) multiset of positive integers (called parts).
- The size of λ, denoted $|\lambda|$ is the sum of these parts.
This model also has an interesting interpretation in terms of integer partitions.

- Recall: a partition, \(\lambda \) is a finite (unordered) multiset of positive integers (called parts).
- The size of \(\lambda \), denoted \(|\lambda| \) is the sum of these parts.
- For \(q = 1 - p < 1 \), there is a probability distribution over partitions where \(\lambda \) is picked with probability proportional to \(q^{|\lambda|} \).
Partitions

This model also has an interesting interpretation in terms of integer partitions.

- Recall: a partition, λ is a finite (unordered) multiset of positive integers (called parts).
- The size of λ, denoted $|\lambda|$ is the sum of these parts.
- For $q = 1 - p < 1$, there is a probability distribution over partitions where λ is picked with probability proportional to q^{λ}.
- The number of parts of size m is independent for different m.
- The probability that there is no part of size m is $1 - q^m$.
Partitions

This model also has an interesting interpretation in terms of integer partitions.

- Recall: a partition, λ is a finite (unordered) multiset of positive integers (called parts).
- The size of λ, denoted $|\lambda|$ is the sum of these parts.
- For $q = 1 - p < 1$, there is a probability distribution over partitions where λ is picked with probability proportional to $q^{|\lambda|}$.
- The number of parts of size m is independent for different m.
- The probability that there is no part of size m is $1 - q^m$.
- Thus $\Pr(A_k)$ is the probability that a random partition has no k parts whose sizes are consecutive integers. We call such a partition a partition without k-sequences.
Generating functions

Let \(p(n) \) be the number of partitions of size \(n \), and \(p_k(n) \) the number of partitions of size \(n \) with no \(k \)-sequence. Consider the generating functions

\[
G(q) = \sum_{n=0}^{\infty} p(n)q^n, \quad G_k(q) = \sum_{n=0}^{\infty} p_k(n)q^n.
\]
Let \(p(n) \) be the number of partitions of size \(n \), and \(p_k(n) \) the number of partitions of size \(n \) with no \(k \)-sequence. Consider the generating functions

\[
G(q) = \sum_{n=0}^{\infty} p(n)q^n, \quad G_k(q) = \sum_{n=0}^{\infty} p_k(n)q^n.
\]

We have that

\[
\Pr(A_k) = \frac{G_k(q)}{G(q)}.
\]

Since the asymptotics of \(G(q) \) are well understood, this reduces our problem to that of understanding \(G_k(q) \).
Asymptotics

The asymptotic of $G_k(q)$ was conjectured by George Andrews.

Conjecture (George Andrews)

For $k \geq 2$,

$$G_k(e^{-s}) \sim C_k \exp \left(\frac{\pi^2}{6s} \left(1 - \frac{2}{k(k+1)} \right) \right)$$

as $s \to 0^+$.
Past Work

Anderws proved the $k = 2$ case of his conjecture using

$$G_2(q) = \prod_{n=1}^{\infty} \frac{1 + q^{3n}}{1 - q^{2n}} \chi(q),$$

where $\chi(q)$ is the mock theta function

$$\chi(q) = \sum_{n=0}^{\infty} q^{n^2} \prod_{m=1}^{n} \frac{1 + q^m}{1 + q^{3m}}.$$
Past Work

Anderws proved the \(k = 2 \) case of his conjecture using

\[
G_2(q) = \prod_{n=1}^{\infty} \frac{1 + q^{3n}}{1 - q^{2n}} \chi(q),
\]

where \(\chi(q) \) is the mock theta function

\[
\chi(q) = \sum_{n=0}^{\infty} q^{n^2} \prod_{m=1}^{n} \frac{1 + q^m}{1 + q^{3m}}.
\]

There are several other cases of partitions without 2-sequences with mild extra restrictions (distinct parts, smallest part bigger than 1) that, by work of MacMahon, Rogers, and Ramanujan have generating functions given by modular forms. These generating functions thus also have well-understood asymptotics.
Past Work

Anderws proved the $k = 2$ case of his conjecture using

$$G_2(q) = \prod_{n=1}^{\infty} \frac{1 + q^{3n}}{1 - q^{2n}} \chi(q),$$

where $\chi(q)$ is the mock theta function

$$\chi(q) = \sum_{n=0}^{\infty} q^{n^2} \prod_{m=1}^{n} \frac{1 + q^m}{1 + q^{3m}}.$$

There are several other cases of partitions without 2-sequences with mild extra restrictions (distinct parts, smallest part bigger than 1) that, by work of MacMahon, Rogers, and Ramanujan have generating functions given by modular forms. These generating functions thus also have well-understood asymptotics. The problem seems to be much more difficult for $k > 2$.
Past Work

For $k > 2$, Holroyd, Liggett, and Romik show that

Theorem

For fixed k, as $s \to 0^+$,

$$
\log(G_k(e^{-s})) \sim \frac{\pi^2}{6s} \left(1 - \frac{2}{k(k + 1)}\right).
$$
Past Work

For $k > 2$, Holroyd, Liggett, and Romik show that

Theorem

For fixed k, as $s \to 0^+$,

$$\log(G_k(e^{-s})) \sim \frac{\pi^2}{6s} \left(1 - \frac{2}{k(k+1)}\right).$$

This was later strengthened by Bringmann and Mahlburg, who showed that

Theorem

For fixed k, as $s \to 0^+$,

$$\log(G_k(e^{-s})) = \frac{\pi^2}{6s} \left(1 - \frac{2}{k(k+1)}\right) + O_k(\log(s)).$$
We prove:

Theorem

For $k \geq 2$, $s \geq 0$

$$G_k(e^{-s}) = \frac{1}{k} \exp\left(\frac{\pi^2}{6s} \left(1 - \frac{2}{k(k + 1)}\right) + O_k\left(s^{\frac{1}{2k+3}}\right)\right).$$
Recurrence Relation

- Unfortunately, it has proven difficult to get at the asymptotics of $G_k(q)$ by modular techniques.
Recurrence Relation

- Unfortunately, it has proven difficult to get at the asymptotics of \(G_k(q) \) by modular techniques.
- Obtain \(G_k(q) \) via recurrence relation.
Recurrence Relation

- Unfortunately, it has proven difficult to get at the asymptotics of $G_k(q)$ by modular techniques.
- Obtain $G_k(q)$ via recurrence relation.
- Let $p_{k,r,L}(n)$ be the number of partitions of n with:
 - No k-sequences
 - No parts of size bigger than L
 - Parts of sizes $L, L - 1, \ldots, L - r + 1$, but no part of size $L - r$
- Let
 $$v_{r,L}^k(q) := \sum_{n=0}^{\infty} p_{k,r,L}(n) q^n.$$
Recurrence Relation

- Unfortunately, it has proven difficult to get at the asymptotics of $G_k(q)$ by modular techniques.
- Obtain $G_k(q)$ via recurrence relation.
- Let $p_{k,r,L}(n)$ be the number of partitions of n with:
 - No k-sequences
 - No parts of size bigger than L
 - Parts of sizes $L, L-1, \ldots, L-r+1$, but no part of size $L-r$
- Let
 \[v_{r,L}^k(q) := \sum_{n=0}^{\infty} p_{k,r,L}(n) q^n. \]
- We have
 \[v_{0,L}^k(q) = \sum_{r=0}^{k-1} v_{r,L-1}^k(q) \]
 \[v_{r,L}^k(q) = \frac{q^L}{1 - q^L} v_{r-1,L-1}^k(q). \]
Recurrence Relation

Thus, letting $z(x) := \frac{x}{1-x}$,

$$v_L(q) := \begin{pmatrix} v_{0,L}^k(q) \\ v_{1,L}^k(q) \\ \vdots \\ v_{k-1,L}^k(q) \\ v_k(q) \end{pmatrix}, \quad M(x) := \begin{pmatrix} 1 & 1 & \cdots & 1 \\ z(x) & 0 & \cdots & 0 \\ 0 & z(x) & \cdots & 0 \\ 0 & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & z(x) \end{pmatrix},$$

then

$$v_L(q) = M(q^L)v_{L-1}(q).$$
Recurrence Relation

Thus, letting $z(x) := \frac{x}{1-x}$,

$$v_L(q) := \begin{pmatrix} v_0^k, L(q) \\ v_1^k, L(q) \\ \vdots \\ v_{k-1}^k, L(q) \end{pmatrix}, \quad M(x) := \begin{pmatrix} 1 & 1 & \cdots & 1 \\ z(x) & 0 & \cdots & 0 \\ 0 & z(x) & \cdots & 0 \\ 0 & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & z(x) \end{pmatrix},$$

then

$$v_L(q) = M(q^L)v_{L-1}(q).$$

Since $v_0(q) = (1, 0, \cdots, 0)^T$, and $G_k(q) = \lim_{L \to \infty} (v_L(q))_1$ we have a recurrence relation that yields G_k.
Eigenvalues

- Have linear, homogeneous, recurrence relation with non-constant coefficients.
Eigenvalues

- Have linear, homogeneous, recurrence relation with non-constant coefficients.
- If coefficients were constant, could solve easily using eigenvalues of M.

\[M(x) = A(x) D(x) A(x)^{-1}, \quad D(x) = \text{Diag}(\lambda_1(x), \ldots, \lambda_k(x)) \]

for $|\lambda_1(x)| \geq |\lambda_2(x)| \geq \ldots \geq |\lambda_k(x)|$.

D. Kane (Stanford)
Eigenvalues

- Have linear, homogeneous, recurrence relation with non-constant coefficients.
- If coefficients were constant, could solve easily using eigenvalues of M.
- Since coefficients are slowly varying, same idea might still work.
Eigenvalues

- Have linear, homogeneous, recurrence relation with non-constant coefficients.
- If coefficients were constant, could solve easily using eigenvalues of M.
- Since coefficients are slowly varying, same idea might still work.

Let

$$M(x) = A(x)D(x)A(x)^{-1}, \quad D(x) = \text{Diag}(\lambda_1(x), \ldots, \lambda_k(x))$$

for $|\lambda_1(x)| \geq |\lambda_2(x)| \geq \ldots \geq |\lambda_k(x)|$.\[9x251]
Eigenvalues

We need to consider

\[\cdots A(q^{L+1})D(q^{L+1})A(q^{L+1})^{-1}A(q^{L})D(q^{L})A(q^{L})^{-1} \cdots A(q)^{-1}v_0. \]
Eigenvalues

We need to consider

\[\cdots A(q^{L+1})D(q^{L+1})A(q^{L+1})^{-1}A(q^{L})D(q^{L})A(q^{L})^{-1} \cdots A(q)^{-1}v_0. \]

Let

\[T_L(q) := A(q^{L+1})^{-1}A(q^{L}). \]
Eigenvalues

We need to consider

\[\cdots A(q^{L+1})D(q^{L+1})A(q^{L+1})^{-1} A(q^L)D(q^L)A(q^L)^{-1} \cdots A(q)^{-1}v_0. \]

Let

\[T_L(q) := A(q^{L+1})^{-1} A(q^L). \]

Since coefficients of A are slowly varying, $T \approx I$. In particular, we can make it so that when $q = e^{-s}$,

\[T_L(q) = I + O(L^{-1} + s). \]
Eigenvalues

We need to consider

\[\cdots A(q^{L+1})D(q^{L+1})A(q^{L+1})^{-1}A(q^L)D(q^L)A(q^L)^{-1} \cdots A(q)^{-1}v_0. \]

Let

\[T_L(q) := A(q^{L+1})^{-1}A(q^L). \]

Since coefficients of \(A \) are slowly varying, \(T \approx I \). In particular, we can make it so that when \(q = e^{-s} \),

\[T_L(q) = I + O(L^{-1} + s). \]

We need to consider

\[\cdots T_{L+1}(q)D(q^L)T_L(q)D(q^{L-1}) \cdots T_2(q)D(q)A(q)^{-1}v_0. \]
Starting with $A(q)^{-1}v_0$, we repeatedly multiply by $T_{L+1}(q)D(q^L)$. Multiplying by D decreases the sizes of the other coordinates relative to the first coordinate. Multiplying by T does not affect the vector much. After some point the vector is approximated by its first coordinate. This lets us ignore off-diagonal entries of T. Thus our final answer is roughly

$$\prod L \lambda_1(q^L) \prod L [T_L(q)]_{1,1} \approx \exp(s - 1 \int \log(\lambda_1(e^{-x}))) dx + \sum L ([T_L(q)]_{1,1} - 1).$$
Primary Eigenvalue

- Starting with $A(q)^{-1}v_0$, we repeatedly multiply by $T_{L+1}(q)D(q^L)$.
- Multiplying by D decreases the sizes of the other coordinates relative to the first coordinate.
- Multiplying by T does not affect the vector much.
Primary Eigenvalue

- Starting with $A(q)^{-1}v_0$, we repeatedly multiply by $T_{L+1}(q)D(q^L)$.
- Multiplying by D decreases the sizes of the other coordinates relative to the first coordinate.
- Multiplying by T does not affect the vector much.
- After some point the vector is approximated by its first coordinate.
- This lets us ignore off-diagonal entries of T.
Primary Eigenvalue

- Starting with $A(q)^{-1}v_0$, we repeatedly multiply by $T_{L+1}(q)D(q^L)$.
- Multiplying by D decreases the sizes of the other coordinates relative to the first coordinate.
- Multiplying by T does not affect the vector much.
- After some point the vector is approximated by its first coordinate.
- This lets us ignore off-diagonal entries of T.

Thus our final answer is roughly

$$\prod_L \lambda_1(q^L) \prod_L [T_L(q)]_{1,1}$$

$$\approx \exp \left(s^{-1} \int \log(\lambda_1(e^{-x}))dx + \sum_L ([T_L(q)]_{1,1} - 1) \right).$$
The above argument only works once v_L is dominated by the primary eigenvector of M.

Need a different method for dealing with the early steps.
The Run-Up

- The above argument only works once v_L is dominated by the primary eigenvector of M.
- Need a different method for dealing with the early steps.
- Consider partitions λ with no k-sequences consisting of parts of size $\leq L$, weighted by $q^{|\lambda|}$, with q^L near 1.
The above argument only works once ν_L is dominated by the primary eigenvector of M.

Need a different method for dealing with the early steps.

Consider partitions λ with no k-sequences consisting of parts of size $\leq L$, weighted by $q^{\mid \lambda \mid}$, with q^L near 1.

If we have parts of size $s_1 < s_2 < \cdots < s_h$, contribution is $z(q^{s_1})z(q^{s_2})\cdots z(q^{s_h})$.
The above argument only works once ν_L is dominated by the primary eigenvector of M.

Need a different method for dealing with the early steps.

Consider partitions λ with no k-sequences consisting of parts of size $\leq L$, weighted by q^{λ}, with q^L near 1.

If we have parts of size $s_1 < s_2 < \cdots < s_h$, contribution is $z(q^{s_1})z(q^{s_2})\cdots z(q^{s_h})$.

Since $z(q^{s_i})$ is big, want h large.
The Run-Up

- The above argument only works once \(\nu_L \) is dominated by the primary eigenvector of \(M \).
- Need a different method for dealing with the early steps.
- Consider partitions \(\lambda \) with no \(k \)-sequences consisting of parts of size \(\leq L \), weighted by \(q^{|\lambda|} \), with \(q^L \) near 1.
- If we have parts of size \(s_1 < s_2 < \cdots < s_h \), contribution is \(z(q^{s_1})z(q^{s_2})\cdots z(q^{s_h}) \).
- Since \(z(q^{s_i}) \) is big, want \(h \) large.
- For the most part, skip every \(k^{th} \) size, leaving blocks of size \(k - 1 \).
- Only a few places \(t_1 < t_2 < \cdots \) where you have blocks of smaller size.
The above argument only works once v_L is dominated by the primary eigenvector of M.

Need a different method for dealing with the early steps.

Consider partitions λ with no k-sequences consisting of parts of size $\leq L$, weighted by q^{λ}, with q^L near 1.

If we have parts of size $s_1 < s_2 < \cdots < s_h$, contribution is $z(q^{s_1})z(q^{s_2})\cdots z(q^{s_h})$.

Since $z(q^{s_i})$ is big, want h large.

For the most part, skip every k^{th} size, leaving blocks of size $k - 1$.

Only a few places $t_1 < t_2 < \cdots$ where you have blocks of smaller size.

Compute contribution for given t's and sum over choices.
Putting it Together

- Use run-up to approximate v_L for $L \approx s^{\frac{-3}{2k+2}}$.
- Use eigenvalue method for the rest.
- A somewhat detailed computation yields the result.
Concluding Remarks

From our asymptotic for $G_k(q)$, we obtain an asymptotic for $p_k(n)$:

Corollary

For fixed k, as $n \to \infty$ we have

$$p_k(n) \sim \frac{1}{2k} \left(\frac{1}{6} \left(1 - \frac{2}{k(k+1)} \right) \right)^{\frac{1}{4}} \frac{1}{n^{\frac{3}{4}}} \exp \left(\pi \sqrt{\frac{2}{3} \left(1 - \frac{2}{k(k+1)} \right) n} \right).$$
Concluding Remarks

We also suspect that these techniques can be used to obtain an asymptotic expansion for $G_k(e^{-s})$ with relative error $O(s^N)$ for any N. In fact we conjecture the following first correction term:

Conjecture

For $s \geq 0$

$$G_k(e^{-s}) = \frac{1}{k} \exp \left(\frac{\pi^2}{6s} \left(1 - \frac{2}{k(k+1)} \right) + \sqrt{\frac{2}{9\pi}} s^{\frac{1}{k}} + O_k \left(s^{\frac{2}{k}} \right) \right)$$

This conjecture agrees well with numerical evidence. It is of particular interest because it would imply that $G_k(q)$ is not modular for any $k > 2$.
Concluding Remarks

We also suspect that these techniques can be used to obtain an asymptotic expansion for $G_k(e^{-s})$ with relative error $O(s^N)$ for any N. In fact we conjecture the following first correction term:

Conjecture

For $s \geq 0$

$$G_k(e^{-s}) = \frac{1}{k} \exp \left(\frac{\pi^2}{6s} \left(1 - \frac{2}{k(k+1)} \right) + \sqrt{\frac{2}{9\pi}} s^\frac{1}{k} + O_k \left(s^\frac{2}{k} \right) \right)$$

This conjecture agrees well with numerical evidence. It is of particular interest because it would imply that $G_k(q)$ is not modular for any $k > 2$.
Acknowledgements

This work was done with the support of an NSF postdoctoral research fellowship.

