The Number of Partitions with no k-Sequences

Daniel M. Kane Robert C. Rhoades

Department of Mathematics
Stanford University

January 11th, 2013
The Rogers-Ramanujan identities tell us that

$$\sum_{n=0}^{\infty} \frac{q^{n^2}}{(q; q)_n} = \frac{1}{(q; q^5)_\infty (q^4; q^5)_\infty}.$$
Rogers–Ramanujan

The Rogers–Ramanujan identities tell us that

\[\sum_{n=0}^{\infty} \frac{q^{n^2}}{(q; q)_n} = \frac{1}{(q; q^5)_\infty (q^4; q^5)_\infty}. \]

Or, in other words

\[\# \{\text{Partitions of } n \text{ into distinct, non-consecutive parts}\} \]
\[\parallel \]
\[\# \{\text{Partition of } n \text{ into parts congruent to 1 or 4 modulo 5}\}. \]
The Rogers-Ramanujan identities tell us that

\[
\sum_{n=0}^{\infty} \frac{q^{n^2}}{(q; q)_n} = \frac{1}{(q; q^5)_\infty (q^4; q^5)_\infty}.
\]

Or, in other words

\[
\# \{ \text{Partitions of } n \text{ into distinct, non-consecutive parts} \} \parallel \# \{ \text{Partition of } n \text{ into parts congruent to 1 or 4 modulo 5} \}.
\]

Using the latter formulation and the theory of modular forms, we can get precise asymptotics for the number of such partitions.
Repeated Parts

The distinct parts requirement can be removed by work of MacMahon, who showed that

\[
\# \{\text{Partitions of } n \text{ into non-consecutive parts bigger than } 1\} \\
\| \\
\# \{\text{Partition of } n \text{ into parts not congruent to } 1 \text{ or } 5 \text{ modulo } 6\}.
\]
Repeated Parts

The distinct parts requirement can be removed by work of MacMahon, who showed that

\[\# \{ \text{Partitions of } n \text{ into non-consecutive parts bigger than 1} \} \n\||\n\# \{ \text{Partition of } n \text{ into parts not congruent to 1 or 5 modulo 6} \} . \]

And again we can obtain precise asymptotics for the number of such partitions.
k-Sequences

- We have a good understanding of the number of partitions of n so that no pair of parts are consecutive integers.
We have a good understanding of the number of partitions of n so that no pair of parts are consecutive integers.

Generalization: Consider partitions of n so that the sizes of no k parts are consecutive integers (i.e. for no m are there parts of sizes $m, m+1, \ldots, m+k-2$ and $m+k-1$). We call these partitions of n with no k-sequences.
k-Sequences

- We have a good understanding of the number of partitions of n so that no pair of parts are consecutive integers.

- Generalization: Consider partitions of n so that the sizes of no k parts are consecutive integers (i.e. for no m are there parts of sizes $m, m + 1, \ldots, m + k - 2$ and $m + k - 1$). We call these partitions of n with no k-sequences.

- Let

\[
p_k(n) := \# \{ \text{Partitions of } n \text{ with no } k\text{-sequences} \}
\]

\[
G_k(q) := \sum_{n=0}^{\infty} p_k(n)q^n.
\]
Finding the asymptotics in the $k > 2$ case seems more difficult.

Conjecture (George Andrews)

For $k \geq 2$,

$$G_k(e^{-s}) \sim C_k \exp\left(\frac{\pi^2}{6s} \left(1 - \frac{2}{k(k+1)}\right)\right)$$

as $s \to 0^+$.
Past Work

Anderws proved the $k = 2$ case of his conjecture using

$$G_2(q) = \prod_{n=1}^{\infty} \frac{1 + q^{3n}}{1 - q^{2n}} \chi(q),$$

where $\chi(q)$ is the mock theta function

$$\chi(q) = \sum_{n=0}^{\infty} q^{n^2} \prod_{m=1}^{n} \frac{1 + q^{m}}{1 + q^{3m}}.$$
Past Work

Anderws proved the $k = 2$ case of his conjecture using

$$G_2(q) = \prod_{n=1}^{\infty} \frac{1 + q^{3n}}{1 - q^{2n}} \chi(q),$$

where $\chi(q)$ is the mock theta function

$$\chi(q) = \sum_{n=0}^{\infty} q^{n^2} \prod_{m=1}^{n} \frac{1 + q^m}{1 + q^{3m}}.$$

For $k > 2$, Holroyd, Liggett, and Romik show that

Theorem

For fixed k, as $s \to 0^+$,

$$\log(G_k(e^{-s})) \sim \frac{\pi^2}{6s} \left(1 - \frac{2}{k(k + 1)}\right).$$
Our Work

We prove:

Theorem

For $k \geq 2$, $s \geq 0$

$$G_k(e^{-s}) = \frac{1}{k} \exp \left(\frac{\pi^2}{6s} \left(1 - \frac{2}{k(k+1)} \right) + O_k \left(s^{\frac{1}{2k+3}} \right) \right).$$
Recurrence Relation

- Unfortunately, it has proven difficult to get at the asymptotics of $G_k(q)$ by modular techniques.

Let $p_{k, r, L}(n)$ be the number of partitions of n with:

- No k-sequences
- No parts of size bigger than L
- Parts of sizes $L, L-1, \ldots, L-r+1$, but no part of size $L-r$

Let $v_{k, r, L}(q) := \sum_{n=0}^{\infty} p_{k, r, L}(n) q^n$.

We have

$$v_{k, 0, L}(q) = \sum_{r=0}^{k-1} v_{k, r, L-1}(q)$$

$$v_{k, r, L}(q) = q^{L-1} - q^{L-r},$$
Recurrence Relation

- Unfortunately, it has proven difficult to get at the asymptotics of $G_k(q)$ by modular techniques.
- Obtain $G_k(q)$ via recurrence relation.
Recurrence Relation

- Unfortunately, it has proven difficult to get at the asymptotics of $G_k(q)$ by modular techniques.
- Obtain $G_k(q)$ via recurrence relation.
- Let $p_{k,r,L}(n)$ be the number of partitions of n with:
 - No k-sequences
 - No parts of size bigger than L
 - Parts of sizes $L, L - 1, \ldots, L - r + 1$, but no part of size $L - r$
- Let
 \[v_{r,L}^k(q) := \sum_{n=0}^{\infty} p_{k,r,L}(n) q^n. \]
Recurrence Relation

- Unfortunately, it has proven difficult to get at the asymptotics of $G_k(q)$ by modular techniques.
- Obtain $G_k(q)$ via recurrence relation.
- Let $p_{k,r,L}(n)$ be the number of partitions of n with:
 - No k-sequences
 - No parts of size bigger than L
 - Parts of sizes $L, L - 1, \ldots, L - r + 1$, but no part of size $L - r$
- Let
 $$v_{r,L}^k(q) := \sum_{n=0}^{\infty} p_{k,r,L}(n) q^n.$$
- We have
 $$v_{0,L}^k(q) = \sum_{r=0}^{k-1} v_{r,L-1}^k(q)$$
 $$v_{r,L}^k(q) = \frac{q^L}{1 - q^L} v_{r-1,L-1}^k(q).$$
Recurrence Relation

Thus, letting \(z(x) := \frac{x}{1-x} \),

\[
v_L(q) := \begin{pmatrix}
v_0^k(q) \\
v_1^k(q) \\
\vdots \\
v_{k-1}^k(q)
\end{pmatrix}, \quad M(x) := \begin{pmatrix}
1 & 1 & \cdots & 1 \\
z(x) & 0 & \cdots & 0 \\
0 & z(x) & \cdots & 0 \\
0 & \vdots & \ddots & 0 \\
0 & \cdots & \cdots & z(x)
\end{pmatrix},
\]

then

\[v_L(q) = M(q^L)v_{L-1}(q).\]
Recurrence Relation

Thus, letting $z(x) := \frac{x}{1-x}$,

$$v_L(q) := \begin{pmatrix} v_{0,L}^k(q) \\ v_{1,L}^k(q) \\ \vdots \\ v_{k-1,L}(q) \end{pmatrix}, \quad M(x) := \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \vspace{1em} \\ z(x) & 0 & \cdots & 0 \\ 0 & z(x) & \cdots & 0 \\ 0 & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & z(x) \end{pmatrix},$$

then

$$v_L(q) = M(q^L)v_{L-1}(q).$$

Since $v_0(q) = (1, 0, \cdots, 0)^T$, and $G_k(q) = \lim_{L \to \infty} (v_L(q))_1$ we have a recurrence relation that yields G_k.
Eigenvalues

- Have linear, homogeneous, recurrence relation with non-constant coefficients.
Eigenvalues

- Have linear, homogeneous, recurrence relation with non-constant coefficients.
- If coefficients were constant, could solve easily using eigenvalues of M.
Eigenvalues

- Have linear, homogeneous, recurrence relation with non-constant coefficients.
- If coefficients were constant, could solve easily using eigenvalues of M.
- Since coefficients are slowly varying, same idea might still work.
Eigenvalues

- Have linear, homogeneous, recurrence relation with non-constant coefficients.
- If coefficients were constant, could solve easily using eigenvalues of M.
- Since coefficients are slowly varying, same idea might still work.

Let

$$M(x) = A(x)D(x)A(x)^{-1}, \quad D(x) = \text{Diag}(\lambda_1(x), \ldots, \lambda_k(x))$$

for $|\lambda_1(x)| \geq |\lambda_2(x)| \geq \ldots \geq |\lambda_k(x)|$.
Eigenvalues

We need to consider

\[\cdots A(q^{L+1})D(q^{L+1})A(q^{L+1})^{-1}A(q^L)D(q^L)A(q^L)^{-1} \cdots A(q)^{-1}v_0. \]
Eigenvalues

We need to consider

\[\cdots A(q^{L+1})D(q^{L+1})A(q^{L+1})^{-1}A(q^{L})D(q^{L})A(q^{L})^{-1} \cdots A(q)^{-1}v_0. \]

Let

\[T_L(q) := A(q^{L+1})^{-1}A(q^{L}). \]
Eigenvalues

We need to consider

$$\cdots A(q^{L+1}) D(q^{L+1}) A(q^{L+1})^{-1} A(q^L) D(q^L) A(q^L)^{-1} \cdots A(q)^{-1} v_0.$$

Let

$$T_L(q) := A(q^{L+1})^{-1} A(q^L).$$

Since coefficients of A are slowly varying, $T \approx I$. In particular, we can make it so that when $q = e^{-s}$,

$$T_L(q) = I + O(L^{-1} + s).$$
Eigenvalues

We need to consider

\[\cdots A(q^{L+1})D(q^{L+1})A(q^{L+1})^{-1}A(q^L)D(q^L)A(q^L)^{-1} \cdots A(q)^{-1}v_0. \]

Let

\[T_L(q) := A(q^{L+1})^{-1}A(q^L). \]

Since coefficients of A are slowly varying, $T \approx I$. In particular, we can make it so that when $q = e^{-s}$,

\[T_L(q) = I + O(L^{-1} + s). \]

We need to consider

\[\cdots T_{L+1}(q)D(q^L)T_L(q)D(q^{L-1}) \cdots T_2(q)D(q)A(q)^{-1}v_0. \]
Primary Eigenvalue

- Starting with $A(q)^{-1}v_0$, we repeatedly multiply by $T_{L+1}(q)D(q^L)$.
Primary Eigenvalue

- Starting with $A(q)^{-1}v_0$, we repeatedly multiply by $T_{L+1}(q)D(q^L)$.
- Multiplying by D decreases the sizes of the other coordinates relative to the first coordinate.
- Multiplying by T does not affect the vector much.
Primary Eigenvalue

- Starting with $A(q)^{-1}v_0$, we repeatedly multiply by $T_{L+1}(q)D(q^L)$.
- Multiplying by D decreases the sizes of the other coordinates relative to the first coordinate.
- Multiplying by T does not affect the vector much.
- After some point the vector is approximated by its first coordinate.
- This lets us ignore off-diagonal entries of T.

Thus our final answer is roughly:

$$\prod_{L} \lambda_1(q^L) \prod_{L} [T_L(q)]_{1,1} \approx \exp(s - 1 \int \log(\lambda_1(e^{-x}))) + \sum_{L} ([T_L(q)]_{1,1} - 1)$$
Primary Eigenvalue

- Starting with $A(q)^{-1}v_0$, we repeatedly multiply by $T_{L+1}(q)D(q^L)$.
- Multiplying by D decreases the sizes of the other coordinates relative to the first coordinate.
- Multiplying by T does not affect the vector much.
- After some point the vector is approximated by its first coordinate.
- This lets us ignore off-diagonal entries of T.

Thus our final answer is roughly

$$\prod_L \lambda_1(q^L) \prod_L [T_L(q)]_{1,1}$$

$$\approx \exp \left(s^{-1} \int \log(\lambda_1(e^{-x})) dx + \sum_L ([T_L(q)]_{1,1} - 1) \right).$$
The Run-Up

- The above argument only works once \(\nu_L \) is dominated by the primary eigenvector of \(M \).
- Need a different method for dealing with the early steps.
The Run-Up

- The above argument only works once \(\nu_L \) is dominated by the primary eigenvector of \(M \).
- Need a different method for dealing with the early steps.
- Consider partitions \(\lambda \) with no \(k \)-sequences consisting of parts of size \(\leq L \), weighted by \(q^{\left| \lambda \right|} \), with \(q^L \) near 1.

If we have parts of size \(s_1 < s_2 < \cdots < s_h \), contribution is

\[
\frac{q^{s_1}}{z} \frac{q^{s_2}}{z} \cdots \frac{q^{s_h}}{z}.
\]

Since \(z(q^{s_i}) \) is big, want \(h \) large.

For the most part, skip every \(k \)th size, leaving blocks of size \(k-1 \).

Only a few places \(t_1 < t_2 < \cdots \) where you have blocks of smaller size.

Compute contribution for given \(t \)'s and sum over choices.
The Run-Up

- The above argument only works once v_L is dominated by the primary eigenvector of M.
- Need a different method for dealing with the early steps.
- Consider partitions λ with no k-sequences consisting of parts of size $\leq L$, weighted by $q^{\mid \lambda \mid}$, with q^L near 1.
- If we have parts of size $s_1 < s_2 < \cdots < s_h$, contribution is $z(q^{s_1})z(q^{s_2}) \cdots z(q^{s_h})$.

Since $z(q^{s_i})$ is big, want h large. For the most part, skip every kth size, leaving blocks of size $k-1$. Only a few places $t_1 < t_2 < \cdots$ where you have blocks of smaller size. Compute contribution for given t's and sum over choices.
The above argument only works once \(\nu_L \) is dominated by the primary eigenvector of \(M \).

Need a different method for dealing with the early steps.

Consider partitions \(\lambda \) with no \(k \)-sequences consisting of parts of size \(\leq L \), weighted by \(q^{\mid \lambda \mid} \), with \(q^L \) near 1.

If we have parts of size \(s_1 < s_2 < \cdots < s_h \), contribution is
\[
 z(q^{s_1})z(q^{s_2})\cdots z(q^{s_h}).
\]

Since \(z(q^{s_i}) \) is big, want \(h \) large.
The above argument only works once v_L is dominated by the primary eigenvector of M.

Need a different method for dealing with the early steps.

Consider partitions λ with no k-sequences consisting of parts of size $\leq L$, weighted by q^{λ}, with q^L near 1.

If we have parts of size $s_1 < s_2 < \cdots < s_h$, contribution is $z(q^{s_1})z(q^{s_2})\cdots z(q^{s_h})$.

Since $z(q^{s_i})$ is big, want h large.

For the most part, skip every k^{th} size, leaving blocks of size $k - 1$.

Only a few places $t_1 < t_2 < \cdots$ where you have blocks of smaller size.
The Run-Up

- The above argument only works once ν_L is dominated by the primary eigenvector of M.
- Need a different method for dealing with the early steps.
- Consider partitions λ with no k-sequences consisting of parts of size $\leq L$, weighted by $q^{||\lambda||}$, with q^L near 1.
- If we have parts of size $s_1 < s_2 < \cdots < s_h$, contribution is $z(q^{s_1})z(q^{s_2}) \cdots z(q^{s_h})$.
- Since $z(q^{s_i})$ is big, want h large.
- For the most part, skip every k^{th} size, leaving blocks of size $k - 1$.
- Only a few places $t_1 < t_2 < \cdots$ where you have blocks of smaller size.
- Compute contribution for given t's and sum over choices.
Putting it Together

- Use run-up to approximate v_L for $L \approx s^{\frac{-3}{2k+2}}$.
- Use eigenvalue method for the rest.
- A somewhat detailed computation yields the result.
Concluding Remarks

From our asymptotic for $G_k(q)$, we obtain an asymptotic for $p_k(n)$:

Corollary

For fixed k, as $n \to \infty$ we have

\[
p_k(n) \sim \frac{1}{2k} \left(\frac{1}{6} \left(1 - \frac{2}{k(k+1)} \right) \right)^{\frac{1}{4}} \frac{1}{n^{\frac{3}{4}}} \exp \left(\pi \sqrt{\frac{2}{3}} \left(1 - \frac{2}{k(k+1)} \right) n \right).
\]
Concluding Remarks

We also suspect that these techniques can be used to obtain an asymptotic expansion for $G_k(e^{-s})$ with relative error $O(s^N)$ for any N. In fact we conjecture the following first correction term:

Conjecture

For $s \geq 0$

$$G_k(e^{-s}) = \frac{1}{k} \exp \left(\frac{\pi^2}{6s} \left(1 - \frac{2}{k(k+1)} \right) + \sqrt{\frac{2}{9\pi}} s^{\frac{1}{k}} + O\left(s^{\frac{2}{k}}\right) \right)$$

This conjecture agrees well with numerical evidence. It is of particular interest because it would imply that $G_k(q)$ is not modular for any $k > 2$.
We also suspect that these techniques can be used to obtain an asymptotic expansion for $G_k(e^{-s})$ with relative error $O(s^N)$ for any N. In fact we conjecture the following first correction term:

Conjecture

For $s \geq 0$

$$G_k(e^{-s}) = \frac{1}{k} \exp \left(\frac{\pi^2}{6s} \left(1 - \frac{2}{k(k+1)} \right) + \sqrt{\frac{2}{9\pi}} s^{\frac{1}{k}} + O\left(s^{\frac{2}{k}}\right) \right)$$

This conjecture agrees well with numerical evidence. It is of particular interest because it would imply that $G_k(q)$ is not modular for any $k > 2$.
Acknowledgements

This work was done with the support of an NSF postdoctoral research fellowship.

