
Almost Optimal Explicit Johnson-Lindenstrauss Transformations

Daniel M. Kane† Raghu Meka‡ Jelani Nelson§

Abstract

The Johnson-Lindenstrauss lemma is a fundamental result in probability with several ap-
plications in the design and analysis of algorithms. Constructions of linear embeddings satis-
fying the Johnson-Lindenstrauss property necessarily involve randomness and much attention
has been given to obtain explicit constructions minimizing the number of random bits used.
In this work we give explicit constructions with an almost optimal use of randomness: For
0 < ε, δ < 1/2, we obtain explicit generators G : {0, 1}r → Rs×d for s = O(log(1/δ)/ε2) such
that for all w ∈ Rd, ‖w‖ = 1,

Pr
y∈u{0,1}r

[|‖G(y)w‖2 − 1| > ε] ≤ δ,

with seed-length r = O
(

log d+ log(1/δ) · log
(

log(1/δ)
ε

))
. In particular, for δ = 1/poly(d)

and fixed ε > 0, we obtain seed-length O((log d)(log log d)). Previous constructions required
Ω(log2 d) random bits to obtain polynomially small error.

We also give a new elementary proof of the optimality of the JL lemma showing a lower bound
of Ω(log(1/δ)/ε2) on the embedding dimension. Previously, Jayram and Woodruff [JW11] used
information and communication complexity techniques to show a similar bound.

1 Introduction

The celebrated Johnson-Lindenstrauss lemma (JLL) [JL84] is by now a standard technique for
handling high dimensional data. Among its many known variants (see [AV99, DG03, IM98, Mat08]),
we use the following version originally proven in [Ach03, AV06] 1.

Theorem 1. For all w ∈ Rd, ‖w‖ = 1, 0 < ε < 1/2, s ≥ 1,

Pr
S∈u{1,−1}s×d

[| ‖(1/
√
s)Sw‖2 − 1 | ≥ ε] ≤ C · e−C′ε2k.

We say a family of random matrices has the JL property (or is a JL family) if the above condition
holds. In typical applications of JLL, δ is taken to be 1/ poly(d) and the goal is to embed a given
set of poly(d) points in d dimensions to O(log d) dimensions with distortion at most ε for a fixed
constant ε. This is the setting we concern ourselves with.

Linear embeddings of Euclidean space as above necessarily require randomness as else one can
take the vector w to be in the kernel of the fixed transformation. To formalize this we use the
following definition.

1Harvard University, Department of Mathematics. dankane@math.harvard.edu.
2University of Texas at Austin, Department of Computer Science. raghu@cs.utexas.edu.
3MIT Computer Science and Artificial Intelligence Laboratory. minilek@mit.edu.
1Throughout, C,C′ denote universal positive constants. For a multiset S, x ∈u S denotes a uniformly random

element of S. For a vector w, ‖w‖ denotes the Euclidean norm of w.

1

Definition 2. For ε, δ > 0, a generator G : {0, 1}r → Rs×d is a (d, s, δ, ε)-JL generator if for every
w ∈ Rd, ‖w‖ = 1,

Pr
y∈u{0,1}r

[| ‖G(y)w‖2 − 1 | ≥ ε] ≤ δ.

1.1 Derandomizing JLL

A simple probabilistic argument shows that there exists a (d,O(log(1/δ)/ε2), δ, ε)-JL generator with
seed-length r = O(log d + log(1/δ)). On the other hand, despite much attention the best known
explicit generators have seed-length at least Ω(log(1/δ) log d) [CW09]. Besides being a natural
problem in geometry as well as derandomization, an explicit JL generator with minimal randomness
would likely help derandomize other geometric algorithms and metric embedding constructions.
Further, having an explicit construction is of fundamental importance for streaming algorithms as
storing the entire matrix (as opposed to the randomness required to generate the matrix) is often
too expensive in the streaming context.

Our main result is an explicit generator that takes roughly O(log d log log d) random bits for
constant ε and δ = 1/ poly(d), and outputs a matrix A ∈ Rs×d satisfying the JL property.

Theorem 3 (Main). There exists a constant C such that for every 0 < ε, δ < 1/2, there exists an
explicit (d,C log(1/δ)/ε2, δ, ε)-JL generator G : {0, 1}r → Rs×d with seed-length

r = O

(
log d+ log(1/δ) · log

(
log(1/δ)

ε

))
.

Our constructions are elementary in nature using only standard tools in derandomization such as
k-wise independence and oblivious samplers [Zuc97]. We give two different constructions. Our first
construction is simpler and gives a generic template for derandomizing most known JL families.
The second construction has the advantage of allowing fast matrix-vector multiplications: the
matrix-vector product G(y)w can be computed efficiently in time O(d log d+ poly(log(1/δ)/ε))2.

Further, as one of the motivations for derandomizing JLL is its potential applications in stream-
ing, it is important that the entries of the generated matrices be computable in small space. We
observe that for any i ∈ [s], j ∈ [d], y ∈ {0, 1}r, the entry G(y)ij can be computed in space
O(log d · poly(log log d)) and time O(d1+o(1)) (for fixed ε, δ > 1/ poly(d)). (See the proof of Theo-
rem 18 for the exact bound)

1.2 Optimality of JLL

We also give a new proof of the optimality of the JL lemma showing a lowerbound of sopt =
Ω(log(1/δ)/ε2) for the target dimension. Previously, Jayram and Woodruff [JW11] used information
and communication complexity techniques to show a similar bound in the case sopt < d1−γ for some
fixed constant γ > 0. In contrast, our argument is more direct in nature and is based on linear
algebra and elementary properties of the uniform distribution on the sphere, and it only requires
the assumption sopt < d/2. Note the JLL is only interesting for sopt < d.

2The computational efficiency does not follow directly from the dimensions of G(y), as the matrices in our con-
structions are obtained by composing several matrices some of which are of dimension Õ(

√
d)× d.

2

Theorem 4. There exists a universal constant c > 0, such that for any distribution A over linear
transformations A : Rd → Rs with s < d/2, there exists a vector w ∈ Rd, ‖w‖ = 1, such that

Pr
S∼A

[|‖Sw‖2 − 1| > ε] ≥ exp(−c(sε2 + 1)).

1.3 Related Work

The `2 streaming sketch of Alon et al. [AMS99] implies an explicit JL family with seed-length
O(log d) for embedding Rd into Rs with distortion ε and error δ, where s = O(1/(ε2δ)). Karnin et
al. [KRS11] construct an explicit family for embedding Rd into Rs with s = poly(1/(εδ)), but with
seed-length only (1 + o(1)) log d+O(log2 s) (i.e., nearly linear in log d).

The works of Diakonikolas et al. [DKN10] and Meka and Zuckerman [MZ10] construct pseu-
dorandom generators for d-variate degree 2 threshold functions achieving a seed-length of log d ·
poly(1/δ) for fooling with error at most δ. As derandomizing the JL lemma is a special case of
fooling degree 2 threshold functions, these works give a JL family with seed-length log d ·poly(1/δ).

The best known explicit JL family is the construction of Clarkson and Woodruff [CW09] who
show that a random scaled Bernoulli matrix with O(log(1/δ))-wise independent entries satisfies the
JL lemma. We make use of their result in our construction.

We also note that there are efficient non-black box derandomizations of JLL, [EIO02], [Siv02].
These works take as input n points in Rd, and deterministically compute an embedding (that
depends on the input set) into RO(logn)/ε2 which preserves all pairwise distances between the given
set of n points.

1.4 Outline of Constructions

For intuition, suppose that δ > 1/dc is polynomially small and ε is a constant. Our constructions
are based on a simple iterative scheme: We reduce the dimension from d to Õ(

√
d)3 and iterate for

O(log log d) steps.

Generic Construction. Our first construction gives a generic template for reducing the
randomness required in standard JL families and is based on the following simple observation.
Starting with any JL family, such as the random Bernoulli construction of Theorem 1, there is a
trade-off that we can make between the amount of independence required to generate the matrix
and the final embedding dimension. For instance, if we only desire to embed to a dimension of
O(
√
d) (as opposed to O(log d)), it suffices for the entries of the random Bernoulli matrix to be

O(1)-wise independent. We exploit this idea by iteratively decreasing the dimension from d to
Õ(
√
d) and so on by using a random Bernoulli matrix with an increasing amount of independence

at each iteration.

Fast JL Construction. Fix a vector w ∈ Rd with ‖w‖ = 1 and suppose δ = 1/poly(d). We
first use an idea of Ailon and Chazelle [AC09] who give a family of unitary transformations R from
Rd to Rd such that for every w ∈ Rd and V ∈u R, the vector V w is regular, in the sense that
‖V w‖∞ = O(

√
(log d)/d), with high probability. We derandomize their construction using limited

independence to get a family of rotations R such that for V ∈u R, ‖V w‖∞ = O(d−(1/2−α)) with
high probability, for a sufficiently small constant α > 0.

3We say f = Õ(g) if f = O(g · polylog(g)).

3

We next observe that for a vector w ∈ Rd, with ‖w‖∞ = O(d−(1/2−α)‖w‖2) projecting onto a
random set of O(d2α log(1/δ)/ε2) coordinates preserves the `2 norm with distortion at most ε with
high probability. We then note that the random set of coordinates can be chosen using oblivious
samplers as in [Zuc97]. The idea of using samplers is due to Karnin et al. [KRS11] who use samplers
for a similar purpose.

Finally, iterating the above schemeO(log log d) times we obtain an embedding of Rd to Rpoly(log d)

using O(log d log log d) random bits. We then apply the result of Clarkson and Woodruff [CW09]
and perform the final embedding into O(log(1/δ)/ε2) dimensions by using a random scaled Bernoulli
matrix with O(log(1/δ))-wise independent entries.

As all of the matrices involved in the construction are either Hadamard matrices or projection
operators, the final embedding can actually be computed in O(d log d+ poly(log(1/δ)/ε)) time.

Outline of Lowerbound. To show a lowerbound on the embedding dimension s, we use Yao’s
min-max principle to first transform the problem to that of finding a hard distribution on Rd, such
that no single transformation can embed a random vector drawn from the distribution well with
very high probability. We then show that the uniform distribution over the d-dimensional sphere is
one such hard distribution. The proof of the last fact involves elementary linear algebra and some
direct calculations.

2 Preliminaries

We first state the classical Khintchine-Kahane inequalities (cf. [LT91]) which gives tight moment
bounds for linear forms.

Lemma 5 (Khintchine-Kahane). For every w ∈ Rn, x ∈u {1,−1}n, k > 0,

E[|〈w, x〉|k] ≤ kk/2 E[|〈w, x〉|2]k/2 = kk/2‖w‖k.

We use randomness efficient oblivious samplers due to Zuckerman [Zuc97] (See Theorem 3.17
and the remark following the theorem in [Zuc97]).

Theorem 6 (Zuckerman [Zuc97]). There exists a constant C such that the for every ε, δ > 0
there exists an explicit collection of subsets of [d], S(d, ε, δ), with each S ∈ S of cardinality |S| =
s(ε, δ, d) = ((log d+ log(1/δ))/ε)C , such that for every function f : [d]→ [0, 1],

Pr
S∈uS

[∣∣∣∣∣1s∑
i∈S

f(i)− E
i∈u[d]

f(i)

∣∣∣∣∣ > ε

]
≤ δ,

and there exists a NC algorithm that generates random elements of S using O(log d + log(1/δ))
random bits.

Corollary 7. There exists a constant C such that the for every ε, δ, B > 0 there exists an explicit
collection of subsets of [d], S(d,B, ε, δ), with each S ∈ S of cardinality |S| = s(d,B, ε, δ) = ((log d+
log(1/δ))B/ε)C , such that for every function f : [d]→ [0, B],

Pr
S∈uS

[∣∣∣∣∣1s∑
i∈S

f(i)− E
i∈u[d]

f(i)

∣∣∣∣∣ > ε

]
≤ δ,

and there exists a NC algorithm that generates random elements of S using O(log d + log(1/δ))
random bits.

4

Proof. Follows by taking S = S(d, ε/B, δ) as in Theorem 6 and using the condition of the theorem
for f̄ : [d]→ [0, 1] defined by f̄(i) = f(i)/B. �

Let Hd ∈ {−1/
√
d, 1/
√
d}d×d be the normalized Hadamard matrix such that HT

d Hd = Id (we
drop the suffix d when dimension is clear from context). While the Hadamard matrix is known
to exist for powers of 2, for clarity, we ignore this technicality and assume that it exists for all d.
Finally, let Sd−1 denote the Euclidean sphere {w : w ∈ Rd, ‖w‖ = 1}.

The following definitions will be useful in giving an abstract description of our construction.

Definition 8. A distribution D over Rs×d is said to be an (d, s, δ, ε)-JL distribution if for any
w ∈ Sd−1, PrS∼D

[∣∣‖Sw‖2 − 1
∣∣ > ε

]
< δ.

Definition 9. A distribution D over Rs×d is said to have the (d, s, t, δ, ε)-JL moment property if

for any w ∈ Sd−1, ES∼D

[∣∣‖Sw‖2 − 1
∣∣t] < εt · δ.

Definition 10. A distribution D is called a strong (d, s)-JL distribution if it is an (d, s, exp(−Ω(ε2s)), ε)-
JL distribution for all ε > 0. D is said to have the strong (d, s)-JL moment property if it has the
(d, s, `, O(

√
`/(ε2s))`, ε)-JL moment property for all 0 < ε < 1/2 and integer ` ≥ 2.

Note that by Theorem 1, random Bernoulli form a (d, s)-JL distribution. Sometimes we
omit the d, s terms in the notation above if these quantities are clear from context, or if it is not
important to specify them.

Throughout, we let logarithms be base-2 unless otherwise specified. We often assume various
quantities, like 1/ε or 1/δ, are powers of 2; this is without loss of generality.

3 Strong JL Distributions and the Strong JL Moment Property

It is not hard to show that having the strong JL moment property and being a strong JL distribution
are equivalent. We use the following fact, which is standard, but we provide a proof in the appendix
for completeness.

Fact 11. Let Y,Z be nonnegative random variables such that Pr[Z ≥ t] = O(Pr[Y ≥ t]) for any
t ≥ 0. Then for ` ≥ 1 if E[Y `] <∞, we have E[Z`] = O(E[Y `]).

Theorem 12. A distribution D is a strong (d, s)-JL distribution if and only if it has the strong
(d, s)-JL moment property.

Proof. First assume D has the strong JL moment property. Then, for arbitrary w ∈ Sd−1, ε > 0,

PrS∼D[|‖Sw‖2 − 1| > ε] < ε−` ·E[|‖Sw‖2 − 1|`] < O(
√
`/(ε2s))`.

The claim follows by setting ` = O(ε2s).
Now assume D is a strong JL distribution. Set Z = |‖Sw‖2 − 1|. Since D is a strong JL

distribution, the right tail of Z is big-Oh of that of the absolute value of the nonnegative random
variable Y which is a Gaussian with mean 0 and variance O(1/s). Now, apply Fact 11. �

Remark 13. Theorem 12 implies that any strong JL distribution can be derandomized using
2 log(1/δ)-wise independence giving an alternate proof of the derandomized JL result of Clarkson
and Woodruff (Theorem 2.2 in) [CW09]. This is because, by Markov’s inequality with ` even,

PrS∼D
[∣∣‖Sw‖2 − 1

∣∣ > ε
]
< ε−` ·ES∼D

[(
‖Sw‖2 − 1

)`] ≤ 2O(`) · (ε−1 ·
√
`/s)`. (3.1)

5

Iterative dimensionality reduction:

// Output a matrix S distributed according to a (d, s, δ, ε)-JL distribution.

1. Define m = log((log 1/δ)/(2 log log 1/δ)), ε′ = ε/(e(m+ 2)), δ′ = δ/(m+ 2).

2. Define si = C(ε′)−2δ′−1/2i , `i = Θ(2i) an even integer for i ≥ 0. Define s−1 = d.

3. Let Si be a random matrix drawn from a distribution with the (si−1, si, `i, δ
′, ε′)-JL moment

property for i = 0, . . . ,m.

4. Let Sfinal be drawn from a (sm, O(ε−2 log(1/δ)), δ′, ε′)-JL distribution.

5. S ← Sfinal · Sm · · ·S0.

Figure 1: A general derandomization scheme for distributions with JL moment properties.

Setting ` = log(1/δ) and s = C`/ε2 for C > 0 sufficiently large makes the above probability at
most δ. Now, note the `th moment is determined by 2`-wise independence of the entries of S.

4 A Generic JL Derandomization Template

Theorem 12 and Remark 13 provide the key insight for our construction. If we use ` = 2 log(1/δ)-
wise independent Bernoulli entries suggested in Remark 13, the seed length would be O(` log d) =
O(log(1/δ) log d) for s = Θ(ε−2 log(1/δ)). However, note that in Eq. (3.1), a trade-off can be
made between the amount of independence needed and the final embedding dimension without
changing the error probability. In particular, it suffices to use 4-wise independence if we embed
into s = Ω(ε−2δ−1) dimensions. In general, if s = Cε−2q for log2(1/δ) ≤ q ≤ 1/δ, it suffices to
set ` = O(logq(1/δ)) to make the right hand side of Eq. (3.1) at most δ. By gradually reducing
the dimension over the course of several iterations, using higher independence in each iteration, we
obtain shorter seed length.

Our main construction is described in Figure 1. We first embed into O(ε−2δ−1) dimension using
4-wise independence. We then iteratively project from O(ε−2δ1/2i) dimensions into O(ε−2δ1/2i+1

)
dimensions until we have finally embedded into O(ε−2 log2(1/δ)) dimensions. In our final step, we
embed into the optimal target dimension using 2 log(1/δ)-wise independence. Note the Bernoulli
distribution is not special here; we could use any family of strong JL distributions.

Theorem 14. The output matrix S in Figure 1 is distributed according to a (d, s, δ, ε)-JL distri-
bution for s = O(log(1/δ)/ε2).

Proof. For a fixed vector w, let wi = Si · · ·S0w, and let w−1 denote w. Then by our choice of si
and a Markov bound on the `ith moment,

Pr
[
‖wi‖2 − ‖wi−1‖2 || > ε′‖wi−1‖2

]
< ε′−`i ·E[(‖wi‖2/‖wi−1‖2 − 1)`i] < δ′

for 0 ≤ i ≤ m. We also have Pr
[
‖Sfinalw

m‖2 − ‖Swm‖2 || > ε′‖wm‖2
]
< δ′. By a union bound,

‖Sfinalw
m‖2 ≤ (1 + ε′)m+2 ≤ e(m+2)ε′ ≤ 1 + ε with probability 1− (m+ 2)δ′ = 1− δ. �

As a corollary, we obtain our main theorem, Theorem 3.

6

Proof. [Proof of Theorem 3] We let the distributions in Steps 3 and 4 of Figure 1 be strong JL
distributions. Then the `ith moment of the error from Di is ε′−`i · O(

√
`i/(ε′2si))

`i = δ′, thus
satisfying Step 3. We know Step 4 is satisfied by Remark 13.

Now, notice our proof of Theorem 14 only required a union bound over the m+ 2 applications
of the Si and Sfinal. Thus, we can always use the same random seed across all levels. The seed
length required to generate S0 is O(log d). For Si for i > 0 the seed length is O(`i log(ε′−2δ′1/2

i
)) =

O(2i log(1/ε′)+log(1/δ′)), which is never larger thanO((log(1/δ′)/ log log(1/δ′)) log(1/ε′)+log(1/δ′)),
which is O((log(1/δ)/ log log(1/δ)) log(1/ε) + log(1/δ)). The seed length required for Sfinal is
O(log(1/δ′) log(log(1/δ′)/ε′)) = O(log(1/δ) log(log(1/δ)/ε)). Thus, the total seed length is domi-
nated by generating S0 and Sfinal, giving the claim. �

5 Explicit JL Families via Samplers

We now give an alternate construction of an explicit JL family. The construction is similar in spirit
to that of the previous section and has the additional property that matrix-vector products for
matrices output by the generator can be computed in time roughly O(d log d + s3), as it is based
on the Fast Johnson-Lindenstrauss Transform (FJLT) of [AC06]. For clarity, we concentrate on
the case of δ = Θ(1/dc) polynomially small. The case of general δ can be handled similarly with
some minor technical issues4 that we skip in this extended abstract. Further, we assume that
log(1/δ)/ε2 < d as else JLL is not interesting..

As outlined in the introduction, we first give a family of rotations to regularize vectors in Rd.
For a vector x ∈ Rd, let D(x) ∈ Rdim×d be the diagonal matrix with D(x)ii = xi.

Lemma 15. Let x ∈ {1,−1}n be drawn from a k-wise independent distribution. Then, for every
w ∈ Rd with ‖w‖ = 1,

Pr[‖HD(x)w‖∞ > n−(1/2−α)] ≤ kk/2

nαk−1
.

Proof. Let v = HD(x)w. Then, for i ∈ [d], vi =
∑

j Hijxjwj and E[v2
i] =

∑
j H

2
ijw

2
j = 1/d. By

Markov’s inequality and the Khintchine-Kahane inequality (Lemma 5),

Pr[|vi| > d−(1/2−α)] ≤ E[vki] · d(1/2−α)k ≤ kk/2d(1/2−α)k/dk/2 = kk/2d−αk.

The claim now follows from a union bound over i ∈ [d]. �

We now give a family of transformations for reducing d dimensions to Õ(d1/2) dimensions using
oblivious samplers. For S ⊆ [d], let PS : Rd → R|S| be the projection onto the coordinates in S. In
the following let C be the universal constant from Corollary 7.

Lemma 16. Let S ≡ S(d, d1/2C , ε, δ), s = O(d1/2 logC(1/δ)/εC) be as in Corollary 7 and let D
be a k-wise independent distribution over {1,−1}d. For S ∈u S, x ← D, define the random linear
transformation AS,x : Rd → Rs by AS,x =

√
d/s·PS ·HD(x). Then, for every w ∈ Rd with ‖w‖ = 1,

Pr[|‖AS,x(w)‖2 − 1| ≥ ε] ≤ δ + kk/2/dk/4C−1.

4In case of very small δ, we need to ensure that we never increase the dimension - which can be done trivially by
using the identity transformation. In case of large δ, we first embed the input vector into O(1/δε2) dimensions using
4-wise independence as in Section 4.

7

Proof. Let v = HD(x)w. Then, ‖v‖ = 1 and by Lemma 15 applied for α = 1/4C,

Pr[‖v‖∞ > d−(1/2−1/4C)] ≤ kk/2/dk/4C−1.

Now suppose that ‖v‖∞ ≤ d−(1/2−1/4C). Define f : [d]→ R by f(i) = d · v2
i ≤ d1/2C = B. Then,

‖AS,x(w)‖2 = (d/s)‖PS(v)‖2 =
1

s

∑
i∈S

dv2
i =

1

s

∑
i∈S

f(i),

and Ei∈u[d] f(i) = (1/d)
∑

i d · v2
i = 1. Therefore, by Corollary 7,

Pr[| ‖AS,x(w)‖2 − 1 | ≥ ε] = Pr
S∈uS

[∣∣∣∣∣1s∑
i∈S

f(i)− E
i∈u[d]

f(i)

∣∣∣∣∣ ≥ ε
]
≤ δ.

The claim now follows. �

We now recursively apply the above lemma. Fix ε, δ > 0. Let A(d, k) : Rd → Rs(d) be
the collection of transformations {AS,x : S ∈u S, x ← D} as in the above lemma for s(d) =
s(d, d1/2C , ε, δ) = c1d

1/2(log d/ε)C , for a constant c1. Note that we can sample from A(d, k) using
r(d, k) = k log d+O(log d+ log(1/δ)) = O(k log d) random bits.

Let d0 = d, and let di+1 = s(di). Let k0 = 8C(c + 1) (recall that δ = 1/dc) and ki+1 = 2ik0.
The parameters di, ki are chosen so that 1/dkii is always polynomially small. Fix t > 0 to be chosen

later so that ki < d
1/4C
i for i < t.

Lemma 17. For A0 ∈u A(d0, k0), A1 ∈u A(d1, k1), · · · , At−1 ∈u A(dt−1, kt−1) chosen indepen-
dently, and w ∈ Rd, ‖w‖ = 1,

Pr[(1− ε)t ≤ ‖At−1 · · ·A1A0(w)‖2 ≤ (1 + ε)t] ≥ 1− tδ −
t−1∑
i=0

k
ki/2
i

d
ki/4C−1
i

.

Proof. The proof is by induction on i = 1, . . . , t. For i = 1, the claim is same as Lemma 16.
Suppose the statement is true for i− 1 and let v = Ai−1 · · ·A0(w). Then, v ∈ Rdi and the lemma
follows by Lemma 16 applied to A(di, ki), and v. �

What follows is a series of elementary calculations to bound the seed-length and error from the
above lemma. Observe that

d(1/2)i ≤ di = d(1/2)i ·
(
c1 logC(d)

εC

)1+(1/2)+···+(1/2)i−1

≤ d(1/2)i
(
c1 logC d

εC

)2

. (5.1)

Let t = O(log log d) be such that 2t = log d/4C log log d. Then, dt ≤ log4C d · (c1 logC d/εC)2 =
O(log6C d/ε2C), and for i < t,

ki < kt = 8C(c+ 1)2t = 2(c+ 1) log d/ log log d < log d = d(1/2)t/4C < d
1/4C
t < d

1/4C
i , (5.2)

where we assumed that log log d > 2c+ 2. Therefore, the error in Lemma 17 can be bounded by

tδ +

t−1∑
i=0

k
ki/2
i

d
ki/4C−1
i

≤ tδ + d
t−1∑
i=0

d
−ki/8C
i (Equation 5.2)

≤ tδ + d

t−1∑
i=0

(d1/2i)−8C(c+1)·2i/8C (Equation 5.1)

≤ tδ + t/dc ≤ 2tδ (as δ > 1/dc).

8

Note that,

ki log di ≤ 8C(c+1)·2i(log d/2i+2C log log d+2C log(1/ε)) = O(log d+log d log(1/ε)/ log log d).

Therefore, the randomness needed after t = O(log log d) iterations is

t−1∑
i=0

O(ki log di) = O(log d log log d+ (log d) log(1/ε)).

Combining the above arguments (applied to δ′ = δ/ log log d and ε′ = ε/ log log d and simplifying
the resulting expression for seed-length) we obtain our fast derandomized JL family.

Theorem 18 (Fast Explicit JL Family). There exists a (ε, δ, d,O(log(1/δ)/ε2))-JL generator with
seed-length r = O(log d+ log(1/δ)(log(log(1/δ)/ε))) such that for every vector w ∈ Rd, y ∈ {0, 1}r,
G(y)w can be evaluated in time O(d log d+ poly(log(1/δ)/ε)).

Proof. We suppose that δ = Θ(1/dc) - the analysis for the general case is similar.
From the above arguments there is an explicit generator that takes O(log(d/δ)·log(log(d/δ)/ε))

random bits and outputs a linear transformation A : Rd → Rm for m = poly(log(d/δ), 1/ε),
satisfying the JL property with error at most δ and distortion at most ε. The theorem now
follows by composing the transformations of the above theorem with a Bernoulli matrix hav-
ing 2 log(1/δ)-wise independence. The additional randomness required is O(log(1/δ) logm) =
O(log(1/δ)(log log(d/δ) + log(1/ε)).

We next bound the time for computing matrix-vector products for the matrices we output. Note
that for i < t, the matrices Ai of Lemma 17 are of the form PS ·HdiD(x) for a k-wise independent
string x ∈ {1,−1}di . Thus, for any vector wi ∈ Rdi , Aiwi can be computed in time O(di log di) using
the discrete Fourier transform. Therefore, for any w = w0 ∈ Rn0 , the product At−1 · · ·A1A0w0 can
be computed in time

t−1∑
i=0

O(di log di) ≤ O(d log d) + log d ·
t−1∑
i=1

O
(
d1/2i(log(1/δ)/ε2)2

)
(Equation 5.1)

= O(d log d+
√
d log d log2(1/δ)/ε4).

The above bound dominates the time required to perform the final embedding.
A similar calculation shows that for indices i ∈ s, j ∈ [d], the entry G(y)ij of the generated

matrix can be computed in space O (
∑

i log di) = O(log d + log(1/ε) · log log d) by expanding the
product of matrices and enumerating over all intermediary indices5. The time required to perform
the calculation is O(s · dt · dt−1 · · · d1) = d · (log d/ε)O(log log d). �

Remark 19. It is also possible to use the FJLT in the framework of Figure 1 to get the same seed
length with fast update time as above. Details are in Section B of the appendix.

5We also need to account for the time and space needed by the samplers and for generating a k-wise independent
strings. However, these are dominated by the task of enumerating over all indices; for instance, the samplers of
[Zuc97] are in NC.

9

6 Optimality of JL Lemma

We next prove Theorem 4, the optimality of the number of rows in the JL Lemma. Note that
for a distribution D, if PrS∼D[|‖Sw‖2 − 1|] < δ] for any w ∈ Sd−1, then it must be the case that
PrS∼D[Prw∈Sd−1 [|‖Sw‖2 − 1|]] < δ. The following theorem shows that no S ∈ Rk×d can have
Prw∈Sd−1 [|‖Sw‖2 − 1|] < δ unless k is at least as large as in the statement of the JL lemma.

Theorem 20. If S : Rd → Rk is a linear transformation with d > 2k and ε > 0 sufficiently small,
then for w a randomly chosen vector in Sd−1, Pr[|‖Sw‖2 − 1| > ε] ≥ exp(−O(kε2 + 1)).

Proof. First we note that we can assume that S is surjective since if it is not, we may replace
Rk by the image of S. Let V = ker(A) and let U = V ⊥. Then dim(U) = k, dim(V) = d − k.
Now, any w ∈ Rd can be written uniquely as wV + wu where wV and wu are the components in
V and U respectively. We may then write wV = rV ΩV , wu = ruΩu, where rV , ru are positive real
numbers and ΩV and Ωu are unit vectors in V and U respectively. Let sV = r2

V and su = r2
u. We

may now parameterize the unit sphere by (sV ,ΩV , su,Ωu) ∈ [0, 1]× Sd−k−1 × [0, 1]× Sk−1, so that
sV + su = 1. It is clear that the uniform measure on the sphere is given in these coordinates by
f(su)dsudΩV dΩu for some function f . To compute f we note that f(su) should be proportional
to the limit as δ1, δ2 → 0+ of (δ1δ2)−1 times the volume of points w so that ‖w‖2 ∈ [1, 1 + δ1] and
‖wu‖2 ∈ [su, su + δ2]. Equivalently, ‖wu‖2 ∈ [su, su + δ2], and ‖wV ‖2 ∈ [1− ‖wu‖2, 1− ‖wu‖2 + δ1].
For fixed wu, the latter volume is within O(δ1δ2) of the volume of wV so that ‖wV ‖2 ∈ [sV , sV +δ1].

Now the measure on V is rd−k−1
V drV dΩV . Therefore it also is 1

2s
(d−k−2)/2
V dsV dΩV . Therefore

this volume over V is proportional to s
(d−k−2)/2
V (δ1 + O(δ1δ2 + δ2

1)). Similarly the volume of wu

so that ‖wu‖2 ∈ [su, su + δ2] is proportional to s
(k−2)/2
u (δ2 + O(δ2

2)). Hence f is proportional to

s
(d−k−2)/2
V s

(k−2)/2
u .

We are now prepared to prove the theorem. The basic idea is to first condition on ΩV ,Ωu. We let
C = ‖SΩu‖2. Then if w is parameterized by (sV ,ΩV , su,Ωu), ‖Sw‖2 = Csu. Choosing w randomly,

we know that s = su satisfies the distribution s(k−2)/2(1−s)(d−k−2)/2

β((k−2)/2,(d−k−2)/2) ds = f(s)ds on [0, 1]. We need

to show that for any c = 1
C , the probability that s is not in [(1 − ε)c, (1 + ε)c] is exp(−O(ε2k)).

Note that f(s) attains its maximum value at s0 = k−2
d−4 < 1

2 . Notice that log(f(s0(1 + x))) is

some constant plus k−2
2 log(s0(1 + x)) + d−k−2

2 log(1 − s0 − xs0). If |x| < 1/2, then this is some
constant plus −O(kx2). So for such w, f(s0(1 + x)) = f(s0) exp(−O(kx2)). Furthermore, for all x,
f(s0(1 + x)) = f(s0) exp(−Ω(kx2)). This says that f is bounded above by a normal distribution
and checking the normalization we find that f(s0) = Ω(s−1

0 k1/2).
We now show that both Pr(s < (1− ε)s0) and Pr(s > (1 + ε)s0) are reasonably large. We can

lower bound either as

s0

∫ 1/2

ε
f(s0) exp(−O(kx2))dx ≥ Ω(k1/2)

∫ ε+k−1/2

ε
exp(−O(kx2))dx

≥ Ω(exp(−O(k(ε+ k−1/2)2)))

≥ exp(−O(kε2 + 1)).

Hence since one of these intervals is disjoint from [(1 − ε)c, (1 + ε)c], the probability that s is not
in [(1− ε)c, (1 + ε)c] is at least exp(−O(kε2 + 1)). �

10

References

[AC06] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform. In Proceedings of the 38th ACM Symposium on Theory of
Computing (STOC), pages 557–563, 2006.

[AC09] Nir Ailon and Bernard Chazelle. The fast Johnson-Lindenstrauss transform and ap-
proximate nearest neighbors. SIAM J. Comput., 39(1):302–322, 2009.

[Ach03] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with
binary coins. J. Comput. Syst. Sci., 66(4):671–687, 2003.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. Journal of Computer and System Sciences, 58(1):137 – 147,
1999.

[AV99] Rosa I. Arriaga and Santosh Vempala. An algorithmic theory of learning: Robust
concepts and random projection. In FOCS, pages 616–623, 1999.

[AV06] Rosa I. Arriaga and Santosh Vempala. An algorithmic theory of learning: Robust
concepts and random projection. Machine Learning, 63(2):161–182, 2006.

[CCFC04] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theor. Comput. Sci., 312(1):3–15, 2004.

[CW09] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming
model. In STOC, pages 205–214, 2009.

[DG03] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson
and lindenstrauss. Random Struct. Algorithms, 22(1):60–65, 2003.

[DKN10] Ilias Diakonikolas, Daniel M. Kane, and Jelani Nelson. Bounded independence fools
degree-2 threshold functions. In Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 11–20, 2010.

[EIO02] Lars Engebretsen, Piotr Indyk, and Ryan O’Donnell. Derandomized dimensionality
reduction with applications. In SODA, pages 705–712, 2002.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing
the curse of dimensionality. In STOC, pages 604–613, 1998.

[JL84] W B Johnson and J Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. Contemp Math, 26:189–206, 1984.

[JW11] T. S. Jayram and David P. Woodruff. Optimal bounds for Johnson-Lindenstrauss trans-
forms and streaming problems with low error. In Proceedings of the 22nd Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), to appear, 2011.

[KRS11] Zohar Karnin, Yuval Rabani, and Amir Shpilka. Explicit dimension reduction and its
applications. In Proceedings of the 23rd Annual IEEE Conference on Computational
Complexity (CCC), to appear, 2011.

11

[LT91] Michel Ledoux and Michel Talagrand. Probability in Banach spaces: isoperimetry and
processes. Springer, 1991.

[Mat08] Jiŕı Matousek. On variants of the Johnson-Lindenstrauss lemma. Random Struct. Al-
gorithms, 33(2):142–156, 2008.

[MZ10] Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold
functions. In STOC, pages 427–436, 2010.

[Siv02] D. Sivakumar. Algorithmic derandomization via complexity theory. In STOC, pages
619–626, 2002.

[TZ04] Mikkel Thorup and Yin Zhang. Tabulation based 4-universal hashing with applications
to second moment estimation. In Proceedings of the 15th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 615–624, 2004.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Struct. Algo-
rithms, 11(4):345–367, 1997.

Appendix

A Missing Proofs

Proof. [Proof of Fact 11]

E[Z`] =

∫ ∞
0

z`ϕ(z)dz =
[
z` · (1− Φ(z))

]∞
0

+ ` ·
∫ ∞

0
z`−1 · (1−Φ(z))dz = ` ·

∫ ∞
0

z`−1 ·Pr[Z ≥ z]dz,

where the second equality holds as long as z` · (1 − Φ(z)) → 0 as z → ∞, which holds since
1− Φ(z) = Pr[Z ≥ z] = O(Pr[Y ≥ z]), and Y has bounded `th moment. The first equality is via
integration by parts. Here, ϕ is the pdf for Z, and Φ is the cdf. The above argument also gives

E[Y `] = ` ·
∫ ∞

0
z`−1 ·Pr[Y ≥ z]dz,

from which the claim follows. �

B Another approach to Fast Iterative JL reduction

Here we discuss how to plug the Fast Johnson-Lindenstrauss Transform (FJLT) of Ailon and
Chazelle [AC09] into the template of Figure 1 to obtain the same seed length as in Theorem 3, but
with a JL distribution that in the end has fast embedding time. That is, rather than use samplers
as in Section 5, we purely use bounded independence.

We first describe a (slightly modified) version of the construction of [AC09]. D ∈ Rd×d represents
a diagonal matrix with random signs on the diagonal (label the ith random sign σ(i)), and H is
the d × d Hadamard matrix, i.e. Hi,j = (−1)〈i,j〉/

√
d, where we interpret i, j ∈ {0, . . . , d − 1} are

interpreted as length-(log d) binary vectors. Q is a s×d sampling matrix (with replacement). That
is, each row of Q is ei for some random i. Our final embedding matrix is S =

√
d/s ·QHD.

The following follows from Lemma 15.

12

Lemma 21.

Pr

[
‖HDw‖∞ >

√
log(d/δ)

d

]
< δ

Proof. Apply Lemma 15 with α = log(
√

log(d/δ)/2)(log d) and k = log(d/δ). �

Theorem 22 (Chernoff Bound). Let X1, . . . , Xn be independent with means µi, variances σ2
i , and

such that |Xi| < K almost surely. Let X =
∑

iXi, µ =
∑

i µi, σ
2 =

∑
i σ

2
i . Then,

Pr [|X − µ| > λ] < e−Ω(min{λ2/σ2,λ/K}).

Let y = HDw. Now, let Xi be the square of the ith sample of HDw taken by Q, scaled by
d/s. Then µi = 1/s, σ2

i ≤ (d · ‖y‖2∞)/s2, K = (d · ‖y‖2∞)/s. The `22 of our embedded vector is then∑
iXi, and we want to bound the probability that it deviates by µ = 1 by more than ε. By the

Chernoff bound, this probability is at most

e−Ω(min{ε2s/(d·‖y‖2∞),εs/(d·‖y‖2∞)}) = e−Ω(ε2s/(d·‖y‖2∞)).

But by Lemma 21, we know ‖y‖2∞ is larger than log(d)+ε
√
s with probability less than e−Ω(ε

√
s).

Thus, conditioning on this event, we have that

PrS [|‖Sw‖2 − 1| > ε] < e−Ω(ε
√
s) + e−Ω((ε2s)/(ε

√
s+log d)) = O(e−Ω(ε

√
s) + e−Ω(ε2(s/ log d))). (B.1)

The above equation now implies the following theorem.

Theorem 23. The modified FJLT given in this section satisfies the (ε,O(
√

(` log d)/(ε2s))` +

O(`/
√
ε2s)`, `, d, s)-JL moment property for any ` ≥ 2.

Proof. The tail bound in Eq. (B.1) is bounded by the max of a Gaussian with variance Θ((log d)/s)
and an exponential random variable with variance Θ(1/s). Thus, by Fact 11, the `th moment of
the error term is bounded by the max of the absolute value of such a Gaussian and exponential
random variable, up to a 2O(`) factor. �

Theorem 23 allows us to plug the modified FJLT into the template of Figure 1 to achieve a
derandomization. We pick S0 to be a random Bernoulli matrix with s0 = Cε′−2δ′−1. In fact, it is
known that with this choice of s0, one can even take a matrix which has only one-nonzero entry
per column, chosen by a 4-wise independent hash function, with a random sign in that location,
again chosen from a 4-wise independent family [CCFC04, TZ04]. Then for i > 0, we set si =
Cε′−2δ′1/2

i
log(si−1) and again set m = O(log log(1/δ′)) so that sm = Cε′−2 log2(1/δ′) log(sm−1).

The matrix Sfinal is then chosen to have 2 log(1/δ)-wise independent Bernoulli entries, scaled by
1/
√
s. Thus, we have the following theorem.

Theorem 24. For any d > 0 and 0 < ε, δ < 1/2, there is a (d,O(ε−2 log(1/δ), δ, ε)-JL distribution
which can be sampled using O(log d+log(1/ε) log(1/δ)+log(1/δ) log log(1/δ)) uniform random bits,
and where any vector can be embedded in Õ(d+ ε−4 log3(1/δ)) time.

Proof. The matrix S0 can be applied in O(d) time, since each column has only one non-zero entry.
Each Si can be applied in O(si log si) time via the fast Hadamard transform. Then, Sfinal can be
applied in O(sm · s) = Õ(ε−4 log3(1/δ)) time. �

13

	Introduction
	Derandomizing JLL
	Optimality of JLL
	Related Work
	Outline of Constructions

	Preliminaries
	Strong JL Distributions and the Strong JL Moment Property
	A Generic JL Derandomization Template
	Explicit JL Families via Samplers
	Optimality of JL Lemma
	Missing Proofs
	Another approach to Fast Iterative JL reduction

