On Solving Games Constructed Using Both Shortened and Continued Conjunctive Sums

By Daniel Kane
Combinatorial Games

What makes up a combinatorial game?
• A set of positions
• An initial position
• A set of moves between positions
• Two players take turns moving
• The last to be able to move wins

Generally, it is assumed that there can be no infinite sequence of moves.
Conjunctive Sums

- Defined by Conway
- Have copies of each composite game played side-by-side. Positions of the form \((A,B)\)
- A move consists of moving in all unfinished components. Moves of the form \((A,B) \rightarrow (A',B')\)
- Short Rule: Game ends when first component does
- Long Rule: Game ends when last component does
- Short sum of \(A\) and \(B\) = \(A \land B\)
- Long sum of \(A\) and \(B\) = \(A \Delta B\)
Remoteness and Suspense

• For short sums, only matters who wins shortest component game
• Strategy: win games quickly, lose games slowly
• With this strategy, length of A is $R(A) = \text{remoteness of } A$
• Similarly define $S(A) = \text{suspense of } A$
• $R(A \land B) = \min(R(A), R(B))$
• $S(A \Delta B) = \max(S(A), S(B))$
• Contain all strategically relevant information about games under short/long conjunctive sums
Our Objective

We would like to find:
$I(G)$ contains all strategically relevant information about G under either conjunctive sum.

Idea: Consider length of G
Problem: Depending on sums, length of G may vary
Solution: Quantify *Control* over the length of G
Ordinal Length Game

Game that “takes \(\alpha \) moves to play”

First Try: \([\alpha] \rightarrow [\beta]\) for some \(\beta < \alpha \)

Problem: Can decrease too quickly.

Solution: Create second coordinate as “lower bound”

Game \([\alpha, \beta]\) for \(\alpha > \beta \) goes to \([\gamma, \delta]\)

for \(\alpha > \gamma \geq \beta, \gamma > \delta \)

Let \([\alpha] = [\alpha + 1, \alpha]\).

Heuristically \([\alpha]\) takes \(\alpha \) moves to play
Some Lemmas

This heuristic is born out in the following lemmas:

- \(R([\alpha]) = \alpha \)
- \(S([\alpha]) = \{ \alpha \text{ or } \alpha+1 \} \)
- \([\alpha] \wedge [\beta] = [\min(\alpha,\beta)] \)
- \([\alpha] \Delta [\beta] = [\max(\alpha,\beta)] \)
- \((A \wedge B) \Delta [\gamma] =_w (A \Delta [\gamma]) \wedge (B \Delta [\gamma]) \)
- \((A \Delta B) \wedge [\gamma] =_w (A \wedge [\gamma]) \Delta (B \wedge [\gamma]) \)
Our Information

We let $I(G)$ associate with G the winners of all the games $(G \wedge [\alpha]) \Delta [\beta]$ for all ordinals α and β.

$I(G)$ can be shown to contain all strategically relevant information about G.

Can be used to classify the algebraic structure of games under this equivalence with the operations of short and long conjunctive sums.
Further Work

There appears to be a duality:

<table>
<thead>
<tr>
<th>Short Conjunctive Sums</th>
<th>Long Conjunctive Sums</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remoteness</td>
<td>Suspense</td>
</tr>
<tr>
<td>Minimum</td>
<td>Maximum</td>
</tr>
</tbody>
</table>

It would be nice to make this rigorous.

Also there’s the operation of concatenation - play one game and then play the other when it’s finished.