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Abstract

We define a class of discrete abelian group extensions of rank-one trans-

formations and establish necessary and sufficient conditions for these ex-

tensions to be power weakly mixing. We show that all members of this

class are multiply recurrent. We then study conditions sufficient for show-

ing that cartesian products of transformations are conservative for a class

of invertible infinite measure-preserving transformations and provide ex-

amples of these transformations.

1 Introduction

Group extensions of measure-preserving dynamical systems have received much
attention in the literature. In most of the works the group has been assumed to
be compact, and if the base transformation is finite measure-preserving then the
extension is finite measure-preserving. A question that has been studied in this
context is conditions under which dynamical properties of the base transforma-
tion (such as weak mixing or mixing) lift to the group extension; the reader
may refer to e.g. [14], [13] and the references in these works. In this article we
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consider extensions of a class of rank-one transformations by countable discrete
abelian groups. While the base transformation is restricted to be a rank-one
transformation we allow the group to possibly be infinite. We establish a simple
condition that is equivalent to the ergodicity of the extensions, and another con-
dition that is equivalent to power weak mixing of the extensions. Power weak
mixing is equivalent to weak mixing for finite measure-preserving transforma-
tions, but it is a stronger property in the case of infinite measure-preserving
transformations. We show that the extension is power weakly mixing if it is
totally ergodic. We also show that our group extensions are multiply recurrent,
and give several applications showing ergodicity or (power) weak mixing for
certain extensions in both the finite and infinite measure-preserving cases. In
the later sections we consider the question of the conservativity of products of
powers of infinite measure-preserving transformations, and apply our results to
staircase transformations.

Let (X,B, µ) be a measure space isomorphic to a finite or infinite inter-
val in R with Lebesgue measure µ (when the interval is finite we assume µ
has been normalized to be a probability measure). Let T : X → X be an
invertible measure-preserving transformation. The transformation T is conser-
vative if for any set A of positive measure, there exists an integer i > 0 such
that µ(T−iA

⋂

A) > 0. T is ergodic if for any pair of sets set A and B of
positive measure, there exists an integer i ≥ 0 such that µ(T−iA

⋂

B) > 0. (As
our transformations are invertible and defined on nonatomic spaces, ergodicity
implies conservativity.) Let T⊗d denote the cartesian product of d > 0 copies
of T . We say that T has infinite conservative index if T⊗d is conservative
with respect to µd for all d > 0 (where µd denotes d-dimensional product of µ);
T has infinite ergodic index if for all d > 0, T⊗d is ergodic with respect to
µd. A transformation T has power conservative index if for all sequences
of positive integers k1, k2, . . . kd, T

k1 × T k2 × . . . × T kd : X⊗d → X⊗d is con-
servative; T is said to be power weakly mixing if for all nonzero k1, . . . , kd,
T k1 × T k2 × . . . × T kd is ergodic.

Power weak mixing is clearly equivalent to weak mixing for finite measure-
preserving transformations, but it is a stronger property in the case of infinite
measure-preserving transformations [4]. In fact, there exists a transformation
T1 such that T1 has infinite ergodic index but T1×T 2

1 is not conservative, hence
not ergodic ([4]).

In Section 2 we define, for each countable discrete abelian group G, a class of
measure-preserving transformations. When G is an infinite group the transfor-
mation is infinite measure-preserving. As the last example in Section 6 shows,
these contain group extensions of rank-one transformations. In Theorem 2.2
we give necessary and sufficient conditions for our construction to be power
weakly mixing. When G is a finite group, the transformation is finite measure-
preserving and our theorem gives equivalent conditions for weak mixing.

We also show that our group extensions are multiply recurrent. A transfor-
mation T is said to be d-recurrent if for all sets of positive measure A there
exists an integer n > 0 such that µ(A ∩ T n(A) ∩ · · · ∩ T nd(A)) > 0. T is said
to be multiply recurrent if it is d-recurrent for all integers d > 0. As is well-
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known, Furstenberg showed that every finite measure-preserving transformation
is multiply recurrent [9], but it is now known that infinite measure-preserving
transformations need not be multiply recurrent [8], [2], even when they are
power weakly mixing [10]. However, it was shown recently that compact group
[11] and σ-finite [12] extensions of multiply recurrent infinite measure-preserving
transformation are multiply recurrent, . This need not be the case for exten-
sions by non-compact groups as already observed in [11], but we obtain multiple
recurrence for our class of (non σ-finite) extensions. In particular, it follows that
for each countable discrete abelian group there is a multiply recurrent extension.

In Section 9 we introduce a condition for rank-one transformations that im-
plies power conservative index, and use it show show that some infinite measure-
preserving staircases have power conservative index.

Acknowledgments. This paper is based on research in the Ergodic Theory
group of the 2004 SMALL Undergraduate Summer Research Project at Williams
College, with Silva as faculty advisor. Support for the project was provided by
a National Science Foundation REU Grant and the Bronfman Science Center
of Williams College.

2 Construction of the Transformations

Fix a countable discrete abelian group G. We will construct transformations
that are G extensions of rank-one transformations produced by a standard cut-
ting and stacking procedure. Let Γ be the set of all elements that are of the
form

(γe, se,0, ..., se,γe−1, ge,0, ..., ge,γe−1)

where γe > 1 is natural number and the remaining entries are an element of
N

γe

0 ×Gγe. For clarity, we sometimes write the subscript se,0 as s(e, 0), etc. We
think of Γ as the set of possible operations to go from one generation to the
next. γ is the number of pieces that we cut each level into, se,i describes the
numbers of spaces added, and gei

describe how the G-component of the column
changes. Let

F : N0 → Γ

be a function. We think of F as the map from generation numbers to what
operation is performed in that generation. We require that F have the property
that for any natural numbers n and d, there are infinitely many natural numbers
m so that F (n + i) = F (m + i) for all 0 ≤ i < d. In other words any sequence
that appears in F does so infinitely often. Let

F (n) = (γn, s(n, 0), ..., s(n, γn − 1), g(n, 0), ..., g(n, γn − 1)).

Given F , we define a (at most rank-|G|) transformation T as follows:
A column consists of a finite (ordered) sequence of intervals of the same

length, called the levels of the column; the number of levels is the height of the
column. We begin with generation-0 columns C0,g for g ∈ G, each consisting
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of an interval of mass 1. To obtain the generation-(N + 1) columns from the
generation-N columns, first write each generation-N column CN,g (g ∈ G) as

CN,g = (I
(0)
N,g, I

(1)
N,g, ..., I

(hN−1)
N,g ),

where we think of hN as the height of the column. Next, cut each level or

interval I
(i)
N,g into γN equal mass subintervals

I
(i)
N,g,0, . . . , I

(i)
N,g,γN−1,

and set

CN+1,g =(I
(0)
N,g+g(N,0),0, . . . , I

(hN−1)
N,g+g(N,0),0, S

(0)
N,g,0, . . . , S

(s(N,0)−1)
N,g,0 ,

I
(0)
N,g+g(N,1),1, . . . , I

(hN−1)
N,g+g(N,1),1, S

(0)
N,g,1, . . . , S

(s(N,1)−1)
N,g,1 , . . . ,

I
(0)
N,g+g(N,γN−1),γN−1, . . . , I

(hN−1)
N,g+g(N,γN−1),γN−1,

S
(0)
N,g,γN−1, . . . , S

(s(N,γN−1)−1)
N,g,γN−1 )

where each S
(j)
N,g,i is a spacer level, i.e., a new subinterval of the same length as

any of the subintervals in its column. The resulting transformation is defined
on the intervals of each column by sending that interval by translation to the
interval above it if there is one. In the limit, the lengths of the intervals in
each column converges to zero, so the transformation is defined in the union of
all the levels. We thus obtain a transformation T that is measure preserving.
Furthermore, one can arrange the subintervals in each column so that T is
defined on a finite or infinite subinterval of R.

We prove the following theorems:

Theorem 2.1. For all such F , T is multiply recurrent.

Theorem 2.2. T is power weakly mixing if and only if the following conditions
are both satisfied,

1. {g(N, i) − g(N, 0) : N ∈ N0, 0 ≤ i ≤ γN − 1} generate G

2. For all N , (1, 0) is in the integer span of

{(s(N, i) + hN , g(N, i + 1) − g(N, i)) : 0 ≤ i ≤ γN − 2}∪

{((s(M + 1, i) + s(M, γM − 1) − s(M, 0)),

(g(M + 1, i + 1) − g(M + 1, i) + 2g(M, 0)− g(M, γM − 1) − g(M, 1)))

: M ∈ N0, 0 ≤ i ≤ γM+1 − 2}

in Z × G.

The first condition essentially states that it is possible to get from any column
to any other column. The Z × G that appears in the second condition should
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be thought of as a group acting on our space with G acting by changing column
index, and 1 ∈ Z acting as T . Let us call the terms in the second condition

tN,i = (s(N, i) + hN , g(N, i + 1) − g(N, i))

and

cM,i = ((s(M + 1, i) + s(M, γM − 1) − s(M, 0)),

(g(M + 1, i + 1) − g(M + 1, i) + 2g(M, 0) − g(M, γM − 1) − g(M, 1))).

They each represent distances in this action between copies of columns as will
be discussed later. The condition that (1, 0) be in their span essentially says
that we have the control to shift things by T .

3 Some Machinery Involving copies of Columns

If I is a level of a generation-n column, n > 1, we say that a level K in a
generation-(n + m) column is a copy of I if K corresponds to a subset of level
I. We define a copy of a column C, in some column of later generation, to be
a union of consecutive levels that are, in order, copies of the levels of C. We
would like to be able to index the copies of generation-N columns in a particular
generation-(N +M) column. If C is a copy of CN+1,g, then we let Pi(C) be the
copy of CN,g+g(N,i) contained in C. In particular, for 0 ≤ i ≤ γN − 1 Pi(C) is

the ith copy of a generation-N column contained in CN,g. Let

PN,g[a0, a1, ..., an] = Pa0
(Pa1

(. . . Pan
(CN,g) . . .)),

where CN,g is thought of as a copy of itself.
Notice that the PN,g[a0, . . . , an−1] index all of the copies of generation-(N +

n) columns in CN,g. Their relative positions are given by the radix ordering on
the ai with a0 being the most significant.

Lemma 3.1. PN+n,g[a0, a1, ..., an−1] is a copy of CN,g+
Pn−1

i=0
g(N+i,ai)

.

Proof. We proceed by induction on n. The n = 0 case is trivial. Assuming that
our statement holds for n− 1, we have, letting C′

M,h denote a copy of CM,h for
any M ∈ N0 and h ∈ G, that

PN+n,g[a0, a1, ..., an−1] =Pa0

(

C′

N+1,g+
Pn−1

i=1
g(N+i,ai)

)

=C′

N,g+
Pn−1

i=0
g(N+i,ai)

.

This completes our inductive step and proves our Lemma.

Lemma 3.2. T k(PN+n,g[a0, . . . , an−1]) = PN+n,g[b0, . . . , bn−1] where

k =

n−1
∑

i=0



hN+i(bi − ai) +

bi−1
∑

j=0

s(N + i, j) −
ai−1
∑

j=0

s(N + i, j)



 .
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Proof. We proceed by induction on
∑n−1

i=0 |ai − bi|. The statement is clearly
true when this is 0. Otherwise, assuming our hypothesis for smaller values of
∑n−1

i=0 |ai − bi|. Without loss of generality we may assume that bi > ai. Then
we have that

PN+n,g[b0, . . . , bn−1] = T hN+i+sbi−1(PN+n,g[b0, . . . bi−1, bi − 1, bi+1, . . . , bn−1])

= T k(PN+n,g[a0, . . . , an−1]).

This completes our inductive step and proves the Lemma.

Lemma 3.3. T k(PN+n,g[γN − 1, γN+1 − 1, . . . , γN+m − 1, am+1, . . . , an−1]) =
PN+n,g[0, . . . , 0, am+1 + 1, am+2, . . . , an−1] where am+1 ≤ γN+m+1 − 2 and

k = hN +

m
∑

i=0

s(N + i, γN+i − 1) + s(N + m + 1, am+1).

Proof. By Lemma 3.2 we have that

k =

m
∑

i=0



−(γN+1 − 1)hN+i −

γN+i−2
∑

j=0

s(N + i, j)



+hN+m+1+s(N+m+1, am+1).

Using the fact that hn+1 = γnhn +
∑γn−1

j=0 s(n, j), we have that

k = hN+m+1 + s(N + m + 1, am+1 +

m
∑

i=0

hN+1 + s(N + i, γN+i − 1) − hN+i+1

= hN +
m
∑

i=0

s(N + i, γN+i − 1) + s(N + m + 1, am+1).

Thus proving our Lemma.

tN,i represents the change in location of the copy when the index corre-
sponding to generation-N is changed from i to i+1. cM,i represents the change
in location of the copy corresponding to the pair of indices corresponding to
generations M and M + 1 changing from (γM − 1, i) to (0, i + 1).

4 Necessity of the Conditions

Lemma 4.1. T is ergodic only if condition 1 is satisfied.

Proof. Suppose that {g(N, i) : N ∈ N0, 0 ≤ i ≤ γN − 1} generate H ( G. Let
g1, g2 ∈ G be in different cosets of H . Consider A = C0,g1

, B = C0,g2
. Assume

for sake of contradiction, that for some n, µ(T n(A)∩B) > 0. This would imply
that there is some column that contains both a copy of C0,g1

and a copy of
C0,g2

. Suppose these copies are PN,g3
[a0, . . . , an−1], PN,g3

[b0, . . . , bn−1]. Then

by Lemma 3.1 we have that g1 = g3 +
∑n−1

i=0 g(i, ai) and g2 = g3 +
∑n−1

i=0 g(i, bi).

Hence we have that g2 − g1 =
∑n−1

i=0 g(i, bi) − g(i, ai) ∈ H , but this is not the
case. Hence T is not ergodic.
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Remark 4.2. This condition is actually sufficient for T being ergodic. This
fact will follow from Lemma 5.2.

Lemma 4.3. T is totally ergodic only if condition 2 is satisfied.

Proof. Pick an N for which the condition does not hold. Let tN,i = ti. Let

H = span({ti : 0 ≤ i ≤ γN − 2} ∪ {cM,i : M ∈ N0, 0 ≤ i ≤ γM+1 − 2})

Let H ∩ (Z × {0}) ⊂ Z(D, 0) for D > 1. We will prove that there is no integer,

n, so that µ(T nD(I
(0)
N,0) ∩ I

(1)
N,0) > 0. Suppose for sake of contradiction that

this is not the case. Then there must exist copies C1, C2 of CN,0 that are
in the same column, and with T nD−1(C1) = C2. Suppose that these copies
are PN+l,g[a0, . . . , al−1], PN+l,g[b0, . . . , bl−1]. For two copies of generation-N
columns in CN+l,g, α, β define ∆(β, α) = (k, h) where T k(α) = β, and α and β
are copies of CN,g′ and CN,g′+h respectively. Notice that ∆(γ, β) + ∆(β, α) =
∆(γ, α). Notice also that ∆(C2, C1) = (nD − 1, 0). Lastly, notice that C1 and
C2 are connected by some chain of copies where each pair of consecutive copies
are of the form given in Lemma 3.3. We have by Lemmas 3.1 and 3.3 that

∆(PN+l,g[0, . . . , 0, am+1 + 1, am+2, . . . , al−1],

PN+l,g[γN − 1, γN+1 − 1, . . . , γN+m − 1, am+1, . . . , al−1]) =

(hN + s(N + m + 1, am+1) +

m
∑

i=0

s(N + i, γN+i − 1),

g(N + m + 1, am+1 + 1) − g(N + m + 1, am+1) −
m
∑

i=0

g(N + i, γN+i − 1)) =

t0 +

m−1
∑

i=0

cN+i,0 + cN+m,am+1
∈ H.

Combining these facts with the fact that H is additively closed, we have that
∆(C2, C1) ∈ H . But by assumption, (nD − 1, 0) /∈ H . This is a contradiction.
Hence T D is not ergodic, proving our Lemma.

5 Sufficiency of Conditions

Lemma 5.1. If condition 2 is satisfied then for any N ∈ N0, there exists some
D 6= 0 so that (D, 0, 0) is in the integer span of

{(s(N, i), g(N, i + 1) − g(N, i), 1) : 0 ≤ i ≤ γN − 2}∪

{(cM,i, 0) : M ∈ N0, 0 ≤ i ≤ γM+1 − 2}

in Z × G × Z for any N ∈ N0.
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Proof. Let the intersection of the integer span of this with Z × {0} × Z be H .
Consider the homomorphism, φM : Z×G×Z → Z×G defined by φM (a, b, c) =
(a + hMc, b). Notice that φ sends Z×{0}×Z to Z×{0}. Hence for all M with
F (M) = F (N), we have that (1, 0) ∈ φM (H). Suppose for sake of contradiction
that H ∩ (Z× {0}× {0}) = {(0, 0, 0)}. Then H must have infinite index in Z×
{0}×Z. So H = Z(a, 0, b) for some a and b. But then, φM (H) = Z(a+ bhM , 0).
But this implies that for infinitely many values of hM that a + bhM = ±1. This
implies that b = 0 and a = ±1. But then (1, 0, 0) ∈ H ∩ (Z × {0} × {0}). This
is a contradiction.

The remainder of this section is devoted to proving that T k1 × · · · × T km is
ergodic. We will let A and B be arbitrary sets of positive measure in the m-fold
product of the space on which T is defined. Given an interval I, a measurable set
A and δ > 0, we say that I is more than (1−δ)-full of A if µ(A∩I) > (1−δ)µ(I);
a similar notion is defined for product sets.

We use a standard technique from measure theory, sometimes called double
approximation, which states that if we have sets I and J (generally products
of levels) more than half-full of A and B, respectively, then if we have several
generations of partitions of I and J into equal numbers of subsets of equal mea-
sure, each generation a refinement of the last (generally, the partitions consist
of all products copies of intervals form I and J in some later generation), with
bijections between the N th generation subsets of I and the N th generation sub-
sets of J , and if furthermore these subsets form a basis of the topologies on I
and J , then for any ǫ > 0, there exist corresponding subsets of I and J of some
generation that are (1 − ǫ)-full of A and B respectively (see e.g. [15, 6.5.4]).

Lemma 5.2. If condition 1 holds, then there exist an integer N and levels
I1, . . . , Im, J1, . . . , Jm from generation-N columns so that Ii and Ji are in the
same column and so that I1 × · · ·× Im and J1 × · · ·×Jm are more than

(

1
2

)

-full
of A and B respectively.

Proof. We may find an integer N1 and generation-N1 columns I ′1, . . . , I
′
m, J ′

1, . . . , J
′
m

so that I ′1 × · · · × I ′m and J ′
1 × · · · × J ′

m are more than
(

1
2

)

-full of A and B re-
spectively. Let I ′i be in CN1,h1,i

and let J ′
i be in CN1,h2,i

. By condition 1, we
may write

h1,i +

r1,i
∑

j=1

g(e1,i,j , l1,i,j) = h2,i +

r2,i
∑

j=1

g(e2,i,j, l2,i,j)

for some values of r ∈ N0, e ∈ S and l ∈ N0. Since F attains all values in
S infinitely often, we may find some sequence of consecutive integers, a, a +
1, . . . , a + b, so that for each t ∈ {1, 2}, 1 ≤ i ≤ m, and 1 ≤ j ≤ rt,i there is a
distinct 0 ≤ αt,i,j ≤ b so that F (a+αt,i,j) = et,i,j . Using double approximation,
we may find an integer N2 so that F (N2 + i) = F (a + i) for all 0 ≤ i ≤ b and
generation N2 levels I ′′1 , . . . , I ′′m, J ′′

1 , . . . , J ′′
m so that I ′′1 ×· · ·×I ′′m and J ′′

1 ×· · ·×J ′′
m

are more than

(

1

2
Qa+b

j=a
γm

j

)

-full of A and B respectively. Furthermore, we can

ensure that if I ′′i and J ′′
i are in columns CN2,h′

1,i
and CN2,h′

2,i
respectively, that

8



h′
1,i − h′

2,i = h1,i − h2,i. Then if we let N = N2 + b + 1 and let Ii be the copy
of I ′′i in

P
N,h′

1,i
−

Pr2,i

j=1
g(e2,i,j ,l2,i,j)

[d0 . . . db]

where

dp =

{

l2,i,j if p = α2,i,j

0 if p 6= α2,i,j∀j

and Ji be the copy of J ′′
i in

P
N,h′

2,i
−

Pr1,i

j=1
g(e1,i,j ,l1,i,j)

[d′0 . . . d′b]

where

d′p =

{

l1,i,j if p = α1,i,j

0 if p 6= α1,i,j∀j
.

These are copies of the correct columns by Lemma 3.1. They are clearly in the
same column. Furthermore we have that I1 × · · · × Im and J1 × · · · × Jm are
more than

(

1
2

)

-full of A and B respectively, proving our Lemma.

Lemma 5.3. If conditions 1 and 2 hold, there exist levels I1, . . . , Im, J1, . . . , Jm

that satisfy the conditions from Lemma 5.2 with the additional property that
some power of T D sends Ii to Ji, where D satisfies the statement of Lemma 5.1
for some N0

Proof. The proof follows the same lines as that of Lemma 5.2. We start with the
levels given to us by Lemma 5.2 and then use double approximation to get the
levels that we need. Suppose that Ii and Ji are separated by T ri . Using double
approximation we know that for and ǫ > 0 and all sufficiently large generation
numbers N , we can find generation-N copies I ′i and J ′

i of Ii and Ji respectively,
so that T ri(I ′i) = J ′

i and so that I ′1 × . . . × I ′m and J ′
1 × . . . × J ′

m are at least
(1 − ǫm/2)-full of A and B respectively. What we wish to show is that for some
ǫ > 0, and for arbitrarily large generation numbers N , given any such intervals
I ′i and J ′

i , that we can find copies I ′′i and J ′′
i of these in generation-(N + n),

that are of size at least ǫ that of the original, and so that I ′′i and J ′′
i are in

the same column, separated by a power of T D. The result would then follow
since I ′′1 × . . . × I ′′m and J ′′

1 × . . . × J ′′
m would be at least

(

1
2

)

-full of A and B
respectively.

For the above to work, we need only show that for any separation r = ri,
that for some sufficiently small ǫ > 0 and sufficiently large generation M , that
we can find two copies of CM,g that are of size at least ǫ that of the original, are
in the same column, and are separated by a power of T congruent to r modulo
D. This allows us to produce the necessary copies of I ′i and J ′

i for each i.
For each congruence class, c modulo D such that for infinitely many N , hN is

in c and F (N) = F (N0), we can, by condition 2, find some integer combination
of tN,i and cM,i That add up to (r, 0) in (Z/DZ)×G. Suppose that the sum of
the absolute values of the multiples of terms of the form tN,i needed is at most

9



X . For a, b ∈ S suppose that the sum of the absolute values of multiplies terms
of the form cM,i where F (M) = a and F (M + 1) = b needed is at most Ya,b.
Find a string of consecutive integers, I, so that on this string the following hold:

There are at least XD values n ∈ I so that F (n) = e.
There are a number of non-overlapping pairs of consecutive integers in I

which do not intersect any of the n used in the previous condition, so that for
at least 2DYa,b of these pairs, F evaluated at these values yields a and b in that
order.

Then for any interval of sufficiently large numbers, I ′ on which F agrees with
the values it takes on I, we can find one of these congruence classes, c for which
there are at least X values n ∈ I ′ for which F (n) = e and hn ≡ c (mod D).

For each a and b we can find at least 2Ya,b pairs of consecutive integers
n, n +1 ∈ I ′ so that F (n) = a, F (n + 1) = b and hn has the same value modulo
D for all of these pairs.

Now if M ′ is the smallest value in I ′, we can construct two copies of CM ′,g

whose size is at least
∏

j∈I
1
γj

of the original. Suppose that

n−2
∑

i=0

αi(s(N, i) + c, g(N, i + 1) − g(N, i)) +
∑

M,i

βM,icM,i = (r, 0)

In (Z/DZ) × G. Then we consider copies of the form

PM ′+k+1,g[d0 . . . dk], PM ′+k+1,g[d
′

0 . . . d′k]

where M ′ + k is the largest value in I ′. We define the di and d′i as follows:
There are αi values n ∈ I ′ for which F (n) = e and hn ≡ c (mod D) where

d′n−M ′ = i + 1 and dn−M ′ = i (if αi is negative, we reverse the values and do it
|αi| times).

There are βM,i values n ∈ I ′ where F (n) = F (M), F (n + 1) = F (M + 1),
d′n−M ′ = 0, dn−M ′ = γM − 1, dn−M ′+1 = i, d′n−M ′+1 = i + 1, and the same
number of such values of n so that hn has the same congruence class modulo
D where dn−M ′ = 1 and d′n−M ′ = 0. (again, if βM,i is negative, we reverse the
values of d and d′ and use the absolute value).

By Lemmas 3.1 and 3.2 these copies have the properties that we want.

Lemma 5.4. Given a, b ∈ Γ, with some n where F (n) = a, F (n + 1) = b, and
given k ∈ N then there exists an interval I of natural numbers, and functions
f0, f1, . . . , fk : I → N0 so that:

1. 0 ≤ fi(l) < γF (l)

2. For every 1 ≤ i ≤ k, 0 ≤ x ≤ γa − 1 and 0 ≤ y ≤ γb − 2, there exists
n′ ∈ I so that F (n′) = a, F (n′ +1) = b and the values on (n′, n′ +1) of f0

and fi are (x, y) and (x + 1, y) (or (0, y + 1) if x = γa − 1) respectively.

3. When the fi are treated as indices for copies of a column of generation
min(I), these copies are all in the same column and consecutive copies are
separated by the same power of T .
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The significance of Lemma 5.4 is that it allows us to produce several equally
spaced copies of a given interval. Furthermore the second condition states that
the indices of these copies will be rich enough that modifying them will allow
us to make crucial adjustments.

Proof. Find a sequence of consecutive values of F of the form e1, e2, . . . , ew, a, b
with

∏w
i=1 γei

> k. Extend this to a sequence of the form

e1, e2, . . . , ew, a, b, d1, . . . , dz, e1, e2, . . . , ew.

Find an interval I so that F applied to I yields (
∏n

i=1 γei
) γaγb

(

∏l
i=1 γdi

)

− 1

non-intersecting copies of the above sequence. We will make our fi all be 0 off
of these subsequences.

We define f0 on these subintervals so that it takes every possible set of values
on the first w + z + 2 entries (as limited by property 1) except for all 0’s. On
each such block we let f0 take values on the two instances of ei that add up to
γei

− 1.
We think of the values of an fi on such a block as an appropriate radix

representation (leftmost digit least significant) of a natural number. We induc-
tively define fi+1 to represent the number one larger. In particular if on some
such block fi takes the values γ1 − 1, . . . , γs − 1, vs+1, . . . , v2w+z+2 where γj is
the appropriate γ for the jth term and vs+1 < γs+1 − 1, then on this block fi+1

takes values 0, . . . , 0, vs+1 + 1, vs+2, . . . , v2w+z+2.
We note that Property 1 is clearly satisfied. Property 2 is satisfied because

if we consider the blocks on which f0 has values γe1
− 1, . . . , γew

− 1, x, y, then
f0 and fi have the appropriate values on the a, b terms. (Using the fact that
∏n

i=1 γei
> i.)

We note that by Lemma 3.3 that the difference in heights of the consecutive
copies indexed by the fi is a fixed sum of hN corresponding to the beginnings of
blocks, plus a correction term based on changes in the number of N for which
fi(N) and F (N) have particular given values. Combining this with Lemma 3.1
we need only show that the number of such N remains constant.

For each fi and each block we associate the three numbers corresponding
to the natural numbers given by the appropriate radix representations fi(n0 +
1), . . . , fi(n0 + w), and fi(n0 + w + 1), . . . , f0(w + z + 2) and fi(n0 + w + z +
3), . . . , f0(2w + z + 3), where n0 + 1 is the beginning of the subinterval. It
suffices to show that the multiplicities with which numbers show up in either
of the first and third places remains constant, and that the multiplicities with
which numbers show up in the second place remains constant.

In fi the first and second places take all possible values except for i, 0. Now if
M1, M2 are one more than the maximum possible values in the first and second
places, then fi and f0 agree in the third place except when the value of f0 in
the first two are M1 − 1 − l, M2 − 1 with 0 ≤ l < i. In that case we have carry
over to the third place and there fi has the value of l + 1 instead of l. So in the
third place, fi and an extra i and one fewer 0. This completes our proof.
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We can now prove Theorem 2.1.

Proof. Let A be a set of positive measure. Let k be an integer. From Lemma
5.4 we can see that there is an ǫ > 0 and columns of arbitrarily high generation
so that these columns have k + 1 copies whose size is more than ǫ of that of
the original, so that these copies are in the same column and consecutive copies
are separated by the same amount. Take a level of such a generation that is

more than
(

1 − ǫ
k+1

)

-full of A. Then the copies of this level in those copies of

its column are each more than
(

k
k+1

)

-full of A and have the property that for

some n, T in of the bottom level is another one of the levels for 1 ≤ i ≤ k. Hence
for this n, µ(A ∩ T n(A) ∩ · · · ∩ T kn(A)) > 0.

We now prove Theorem 2.2.

Proof. We begin with the levels given to us by Lemma 5.3. We wish to show
that there is an ǫ > 0 so that for m pairs of levels of arbitrarily high generation
with the same separation between corresponding levels as we have between Ii

and Ji, we can find copies of these levels of size more than ǫ times that of the
original so that corresponding copies are in the same column, and so that the
difference in heights between the ith pair of copies is proportional to ki. This
would prove our Theorem with a simple application of double approximation.

Notice that the intersection of the span of the set in Lemma 5.1 with Z ×
G × {0} is the span of (cM,i, 0), since tN,i − tN,j = cN−1,i − cN−1,j . Therefore,
(D, 0) is in the span of the cM,i. Hence if T Ddi(Ii) = Ji then we can write

(Ddi, 0) =
∑

M,j

αM,j,icM,j

Using Lemma 5.4 we can find an ǫ > 0 so that for arbitrarily large generations
of columns, we can find m pairs of copies so that each pair of copies is in the
same column and separated by a power of T proportional to ki. Furthermore,
we can make these copies more than ǫ the size of the original. Lastly, we can
guarantee that for any M, j with there are at least |αM,j,i| integers n so that
F (n) = F (M), F (n+1) = F (M +1) and so that in the indexing of the first and
second copy in the ith pair, the index of the copy at the digits corresponding
to n and n + 1 are either 0,j and 1,j or γn − 1,j and 0,j + 1 respectively. If
we change |αM,j,i| of one of these types to the other, then we keep these pairs
of copies in the same column, but alter their relative height difference by Ddi.
This provides what we need for the double approximation.

Remark 5.5. Note that the proof of Theorem 2.2 implies that T is power weakly
mixing if and only if it is totally ergodic. Note also that to check condition 2,
it is sufficient to first check to see if a D from Lemma 5.1 exists, and if one
does, to check condition 2 modulo D for a particular N so that infinitely often
F (M) = F (N) and hN ≡ hM (mod D). This reduces checking condition 2 to a
finite computation.
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Notice also that if Im (F) = {(n, s0, . . . , sn−1, 0, g1, . . . , gn−1)}, then condi-
tion 2 can be written in the simple form that (1, 0) is in the span of {(si +
hN , gi+1 − gi), (sn−1,−gn−1)} for all N .

6 Examples

These first few will be where Γ has a single element as in the last remark.
Consider for example the Chacón-m transformation for m ≥ 2. Following

N. Friedman, a Chacón-m transformation is a rank-one transformation where
column Cn+1 is obtained from column Cn but cutting each level of Cn into
m sub-levels, stacking from left to right and placing a spacer on top of the
last level; see Section 9 for more details on rank-one constructions. We can
define a Chacón-m transformation by letting G = {0}, n = m and si = 0 for
0 ≤ i ≤ n − 2, sn−1 = 1, and gi = 0 for 0 ≤ i ≤ n − 1. Clearly, {gi} generates
G, so condition 1 is satisfied. Since (1, 0) = (sn−1,−gn−1) it is in the span of
{(si + hN , gi+1 − gi), (sn−1,−gn−1)}. Therefore, it is power weakly mixing.

Consider the transformation defined by G = {0}, n = 3 and the sequence
(1, 1, 0, 0, 0, 0). Condition 2 states that (1, 0) is in the span of {(1 + hN , 0), (1 +
hN , 0), (0, 0)} = (1 + hN )Z × {0}. Which does not hold for any, hN . Therefore
this transformation is not power weakly mixing (in fact it is not T 2 ergodic).

Consider the transformation, T defined by the group G = Z, n = 5 and
the set (0, 0, 0, 1, 0, 0, 1, 0, 0, 0). It satisfies condition 1 since g1 = 1 gener-
ates G. Condition 2 states that (1, 0) ∈ span{(hN , 1), (hN ,−1), (hN , 0), (1 +
hN , 0), (0, 0)}. This clearly holds since (1, 0) = (1+hN , 0)− (hN , 0). Therefore,
T is a power weakly mixing, infinite-measure preserving transformation.

Lastly consider the group G to be any countably generated abelian group
with generators ei for i ∈ N0. If n ∈ N, let e(n) = k where k is the largest power
of 2 such that 2k divides n. Let F (n) = (4, 0, 0, 0, 1, 0, 0, ee(n+1), 0). F clearly
satisfies the necessary condition. Notice that T is a G-extension of Chacón-4.
Condition 1 is clearly satisfied. Condition 2 is satisfied since

(1, 0) = ((s(1, 0) + s(0, 3) − s(0, 0)), (g(1, 1)− g(1, 0) − g(0, 3) − g(0, 1))).

Therefore, T is power weakly mixing.

7 Non-totally ergodic 2-point extension

As an example of the above we analyze what happens in the particular case
where G = Z/2Z and F (n) = (2, 0, 1, 0, 1).

Consider the two-point extension T of the Chacon-2 transformation formed
as follows. Begin with two intervals of equal size – call them columns C0,0

and C0,1. These will be known as the generation zero columns. To define the
generation n+1 columns, cut each of the generation n columns in half, stacking
the right half of Cn,1 over the left half of Cn,0 and vice versa. Then add a spacer
to the top of the two columns thus formed to yield the generation n+1 columns.
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The transformation T is defined to map each point to the point directly above
it. To see that T is indeed a two-point extension of Chacon-2, associate each
point in Cn,0 with the corresponding point in Cn,1 for all n. The resulting space
and transformation are exactly Chacon-2. It is well-known that Chacon-2 is a
weakly mixing transformation, therefore totally ergodic, but we will show that
the two-point extension T is not even T 2 ergodic.

Let I and J be the top and middle levels, respectively, in C1,0. Suppose for
some m we have µ(T m(I) ∩ J) > 0. Then there must be some generation in
which there is a copy J ′ of J above a copy I ′ of I by a distance m levels. That
is, T m(I ′) = J ′, and we will write d(I ′, J ′) = m. We will show that this cannot
be the case if m is even.

We prove by induction on n that for all n, any two copies of I in one of
the generation n columns must be an even distance apart. This is vacuously
true for n = 1, 2. Assume it is true for generation n. Label the left halves of
the top copies of I in Cn,0 and Cn,1 as I0 and I1, respectively. Label the right
halves of the bottom copies of I as I2 and I3, respectively. To prove the claim
we must show that the distances from I0 to I3 and from I1 to I2 are both even.
For convenience label the right halves of the bottom levels of Cn,0 and Cn,1 by
K0 and K1 respectively. Then d(K0, I2) = 2 and d(K1, I3) = 5 since this is
true for n = 2 and since the bottoms of columns are preserved through later
generations. The distance from I0 to K1 is given by:

d(I0, K1) =

{

n + 3 n even

n n odd

Similarly, we have

d(I1, K0) =

{

n n even

n + 3 n odd

These are true because they hold for n = 2 and by induction on n. The funda-
mental idea is that the top of Cn,1 looks like the top of Cn−1,0 with an extra
spacer added on top. From this the above statements are easily shown by in-
duction.

Both d(I0, I3) = d(I0, K1) + d(K1, I3) and d(I1, I2) = d(I1, K0) + d(K0, I2)
must then be even, independent of n. By induction, µ(T m(I) ∩ I) > 0 implies
m is even. Since each copy of J lies directly below a copy of I, this means that
µ(T m(I) ∩ J) > 0 implies m is odd. Therefore µ(T 2m(I) ∩ J) = 0 for all m, so
T 2 is not ergodic.

8 Conservativity and Recurrence on a Sufficient

Class

In this section all transformations are assumed to be infinite measure preserving,
and not necessarily invertible. If for any measurable set A we have µ(A \
⋃∞

i=1 T−iA) = 0 then T is said to be recurrent. For sets of finite measure
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this condition is equivalent to µ(A∩
⋃∞

i=1 T−iA) = µ(A). A class C of subsets of
X is called a sufficient class if it satisfies the following approximation property
for all measurable A ⊂ X :

µ(A) = inf







∞
∑

j=1

µ(Ij) : {Ij} cover A and Ij ∈ C







A transformation is said to be conservative on C or recurrent on C if the
condition for conservativity or recurrence holds for all I ∈ C of positive measure,
but not necessarily for all measurable sets. While conservativity and recurrence
are known to be equivalent, we show in this section that conservativity and
recurrence on a sufficient class C are not equivalent. In particular recurrence on
a sufficient class implies recurrence, but the same is not true for conservativity.

Consider the following infinite measure preserving transformation T : R → R

which is conservative on the sufficient class C = {I : I is a finite open interval}.
It is well known that there exist sets K ⊂ [0, 1) and Kc = [0, 1) \ K of positive
measure such that µ(I∩K) > 0 if and only if µ(I∩Kc) > 0 for all I ∈ C. Define
T by:

T (x) =

{

x x mod 1 ∈ K

x + 1 x mod 1 ∈ Kc

Then T is conservative on C, but µ(T−n(Kc) ∩ Kc) = 0 for all nonzero n so T
is not conservative. Note however that T is not recurrent on C.

Proposition 8.1. Let (X,B, µ) be a measure space such that any set of infinite
measure has a subset of finite but positive measure, e.g. a σ-finite measure space,
and let T be an infinite measure-preserving transformation. If T is recurrent on
a sufficient class, then T is recurrent.

Proof. Let C be a sufficient class, and suppose that T is not recurrent. Then
T is not conservative, so there exists a set A of positive measure such that
µ(A∩T−n(A)) = 0 for all n > 0. Perhaps taking a subset, we may assume that
A has finite measure. We can then find a set I ∈ C such that µ(A∩ I) > 1

2µ(I).
Note that if a subset of I \A with positive measure is mapped into A by T−i for
some i it will never be mapped into A for any j > i (by hypothesis, any subset
of A of positive measure is never mapped into A under iteration by T−1), so we
have

µ

(

I ∩
∞
⋃

i=1

T−i(I)

)

= µ

(

(I \ A) ∩
∞
⋃

i=1

T−i(I)

)

+ µ

(

(I ∩ A) ∩
∞
⋃

i=1

T−i(I \ A)

)

≤ µ (I \ A) + µ (I \ A)

<
1

2
µ(I) +

1

2
µ(I) = µ(I)

Thus T is not recurrent on C.
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To see that a regularity condition on the space (X,B, µ) is necessary, let
X = R and B = 2R. Define µ(A) to be zero if A is finite or countable and
infinity otherwise. The collection C of all singletons in R along with the set R

itself is a sufficient class for this space. Any bijective map on X is measure-
preserving and recurrent on C, but in general it need not be recurrent.

9 Power Conservative Index

In this section we obtain a condition for rank-one transformations that implies
power conservative index. A notion that has been used to study conservativity
of products is that of positive type. A transformation T is of positive type if
lim supn→∞ µ(T n(A)∩A) > 0 for all sets A of positive measure. Clearly, if T is
of positive type, then it is conservative. It was shown in [2] that if T is of positive
type, then for each positive integer d, the cartesian product of d copies of T is
of positive type, so positive type implies infinite conservative index. But it is
easily verified that the transformation T1 of [4] is of positive type but as already
mentioned T1×T 2

1 is not conservative, so T1 is not power conservative, showing
that positive type does not imply power conservative index. Our condition can
be used to show show that some infinite measure-preserving staircases have
power conservative index.

First, we introduce some notation for constructing measure-preserving rank-
one transformations. We start with a column C0, which is a unit interval. Let
rn be a sequence of integers with rn ≥ 2. At each stage n, we have a column
Cn that consists of hn intervals (hn denotes the height of column Cn, which is
definite to be the number of intervals in the column). We denote the intervals
in Cn by In,0, In,1, ..., In,hn−1, where In,0 is the interval at the lowest level. A
column determines a map on all of its levels but the top, where each interval
is mapped to the interval above it by the canonical translation. Column Cn+1

is obtained from column Cn by cutting and stacking according to the following
procedure. Cut all intervals of column Cn into rn subintervals of the same

measure to form subcolumns, C
[0]
n , C

[1]
n , ..., C

[rn−1]
n . Then we may put spacers

on top of the subcolumns. Let {sn,i}
rn−1
i=0 be a doubly indexed sequence of

non-negative integers. The sequence sn,0, sn,1, ..., sn,rn−1 specifies the number
of spacers on each respective subcolumn. Then stack subcolumns on top of one
another, with each subcolumn going underneath its adjacent subcolumn to the
right, so that the rightmost subcolumn goes on the very top. This cutting and
stacking procedure obtains column Cn+1. This defines a sequence of columns
Cn and as the width of the column approaches 0, it defines a measure-preserving
transformation on a finite or an infinite interval.

We prove the following Theorem:

Theorem 9.1. Let T be a rank 1 transformation with cut sizes {rn}. If for all
d > 0,

lim inf
n→∞

hd−1
n

∏n−1
i=0 rd

i

= 0
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then T is power conservative index.

We do this by proving the stronger theorem

Theorem 9.2. Let T be a rank 1 transformation with cut sizes {rn}. Let
{ki}d

i=1 be positive integers. If

lim inf
n→∞

hd−1
n

∏n−1
i=0 rd

i

= 0,

then T k1 × T k2 × . . . × T kd is conservative.

Fix the ki. Let S = T k1 × T k2 × . . . × T kd . For a column Cn define an
equivalence relation ∼n on d-fold products of levels so that I ∼n J if and only
if for some integer N , SN (I) = J .

Lemma 9.3. Suppose that A ⊂ Xd is a set where µ(Sn(A) ∩ A) = 0 for all
n 6= 0. Let L be the ∼n equivalence class of products of levels equivalent to I.
Then

µ

(

A ∩

(

⋃

J∈L

J

))

≤ µ(I).

Proof. First modify A by a set of measure 0 so that Sn(A)∩A = ∅ for all n 6= 0.
Note that

⋃

J∈L J is a subset of
⋃

N∈Z
SN (I). In fact for some subset P ⊂ Z,

we can write
⋃

J∈L

J =
∐

N∈P

SN (I).

We therefore, think of this set as P × I. Let χA be the characteristic function
of A on P × I. We note that since Sn(A) ∩ A = ∅ for n 6= 0, that χA(a, x) and
χA(b, x) cannot both be 1 for a 6= b. Hence

∫

P

χA(n, x)dn =
∑

n∈P

χA(n, x) ≤ 1.

So by changing the order of integration, we get that

µ

(

A ∩

(

⋃

J∈L

J

))

=

∫

P×I

χA(n, x)dµ

=

∫

I

∫

P

χA(n, x)dndx

≤

∫

I

dx

= µ(I).
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Lemma 9.4. The number of equivalence classes of ∼n is at most

(

d
∑

i=1

ki

)

hd−1
n .

Proof. To each product of levels, we can associate a d-tuple of integers in the
range [1, hn] representing the heights of the levels. It is clear that the product
associated with {ai} and the product associated with {ai + ki} are equivalent.

Each equivalence class has at least one element with
∑d

i=1 ai minimal. We will
bound the number of such sequences.

Clearly, for
∑d

i=1 ai to be a minimal representative of an equivalence class,
{ai −ki} cannot be a valid sequence. Therefore ai ≤ ki for some i. The number
of such sequences with ai ≤ ki for a given i is at most kih

d−1
n . Summing over i

gives our result.

We are now prepared to prove Theorem 9.2.

Proof. Suppose that

lim inf
n→∞

hd−1
n

∏n−1
i=0 rd

i

= 0,

and that A ⊂ Xd satisfies µ (Sn(A) ∩ A) = 0 for all n 6= 0. We wish to bound
µ
(

A ∩ Cd
n

)

. Lemma 9.3 says that the intersection of A with any equivalence
class of levels is at most the size of a level, or

(

n−1
∏

i=0

rd
i

)−1

. Lemma 9.4 says that there are at most Khd−1
n equivalence classes where

K =
∑d

i=1 ki. Therefore,

µ
(

A ∩ Cd
n

)

≤
Khd−1

n
∏n−1

i=0 rd
i

.

Hence
lim inf
n→∞

µ
(

A ∩ Cd
n

)

= 0.

Since Cd
n exhausts Xd, this implies that µ(A) = 0.

Corollary 9.5. There exists an infinite measure-preserving pure staircase trans-
formation T such that T has power conservative index.

Proof. Let T be the classical staircase transformation with rm = 22m

. Direct
computation shows that hm ≤ m+1

2 rm holds for m = 0, and we will prove that
it holds for all m by induction. If this holds for m we can apply the definition
of hm+1 for a staircase transformation to yield

hm+1 = hmrm +
1

2
rm(rm − 1) ≤

m + 1

2
r2
m +

1

2
r2
m =

m + 2

2
r2
m =

m + 2

2
rm+1.
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Then we can bound

hd−1
m

(
∏m−1

i=0 ri)d
=

hd−1
m

(

rm

2

)d
=

1

hm

(

2hm

rm

)d

≤
(m + 1)d

hm

≤
(m + 1)d

rm

which approaches 0 as m → ∞ for all d ≥ 1. Hence, this transformation T
satisfies the condition of Theorem 9.1.

Corollary 9.6. Let T be a rank-one transformation with rn = 22n

and such
that

sn,i =

{

2i when 2|i

0 otherwise.

Then T is an infinite measure-preserving transformation that is power conser-
vative but such that T 2 is not ergodic.

Proof. An argument similar to that in Corollary 9.5 shows that T has power
conservative index. Let I1 and I2 be two levels in some column Cm such that
α(I1) − α(I2) is a positive odd number. Now consider sublevels of I1 and I2,
denoted by I ′1 and I ′2 respectively, in some column Cn for n > m. From the
construction, α(I ′1)−α(I ′2) will always be an odd number. It follows that there
does not exist an integer t such that T 2t(I ′1) = I ′2. Hence, T 2 is not ergodic.

References

[1] T. Adams. Smorodinsky’s conjecture on rank-one mixing, Proc. Amer.
Math. Soc. 126(3) (1998), 739-744.

[2] J. Aaronson and H. Nakada. Multiple recurrence of Markov shifts and other
infinite measure preserving transformations. Isr. J. Math. 117, (2000), 285-
310.

[3] T. Adams, N. Friedman, and C.E. Silva. Rank-one weak mixing for non-
singular transformations. Isr. J. of Math. 102 (1997), 269-281.

[4] T. Adams, N. Friedman, and C.E. Silva. Rank one power weakly mix-
ing nonsingular transformations,Ergodic Theory & Dynam. Sys. 21 (2001),
1321-1332.

[5] A. Bowles, L. Fidkowski, A. Marinello, and C.E. Silva. Double ergodicity
of nonsingular transformations and infinite measure-preserving staircase
transformations. Illinois J. of Math. 45, ( 2001), 999–1019.

[6] A. Danilenko. Funny rank-one weak mixing for nonsingular abelian actions.
Israel J. Math. 121 (2001), 29–54.

[7] S. Day, B. Grivna, E. McCartney, and C.E. Silva. Power Weakly Mixing
Infinite Transformations. New York Journal of Math. 5 (1999), 17-24.

19



[8] S. Eigen, A. Hajian, K. Halverson, Multiple recurrence and Infinite Mea-
sure Preserving Odometers, Israel J. Math. 108 (1998), 37-44.

[9] H. Furstenberg. Recurrence in ergodic theory and combinatorial number
theory. Princeton Univ. Press, Princeton, N.J., 1981.

[10] K. Gruher, F. Hines, D. Patel, C. E. Silva and R. Waelder. Power weak
mixing does not imply multiple recurrence in infinite measure and other
counterexamples. New York J. Math. 9, 2003, 1–22.

[11] K. Inoue. Isometric extensions and multiple recurrence of infinite measure
preserving systems Israel J. Math. 140 (2004) 245–252.

[12] T. Meyerovitch. Extensions and multiple recurrence of infinite measure
preserving systems, preprint. ArXiv: http://arxiv.org/abs/math/0703914.

[13] E. A. Robinson. Ergodic properties that lift to compact group extensions,
Proc. Amer. Math. Soc., 102, 1988, 61– 67.

[14] D. J. Rudolph. k-fold mixing lifts to weakly mixing isometric extensions.
Ergodic Theory & Dynam. Systems 5 (1985), no. 3, 445–447

[15] C. E. Silva. Invitation to Ergodic Theory. Student Math. Library, Vol. 42,
Amer. Math. Soc., 2008.

20

http://arxiv.org/abs/math/0703914

	Introduction
	Construction of the Transformations
	Some Machinery Involving copies of Columns
	Necessity of the Conditions
	Sufficiency of Conditions
	Examples
	Non-totally ergodic 2-point extension
	Conservativity and Recurrence on a Sufficient Class
	Power Conservative Index

