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Abstract

A polynomial threshold function (PTF) of degree d is a boolean function of the form f =
sgn(p), where p is a degree-d polynomial, and sgn is the sign function. The main result of the
paper is an almost optimal bound on the probability that a random restriction of a PTF is not
close to a constant function, where a boolean function g is called δ-close to constant if, for some
v ∈ {1,−1}, we have g(x) = v for all but at most δ fraction of inputs. We show for every PTF
f of degree d ≥ 1, and parameters 0 < δ, r ≤ 1/16, that

Prρ∼Rr
[fρ is not δ-close to constant] ≤ (

√
r + δ) · (log r−1 · log δ−1)O(d2),

where ρ ∼ Rr is a random restriction leaving each variable, independently, free with probability
r, and otherwise assigning it 1 or −1 uniformly at random. In fact, we show a more general
result for random block restrictions: given an arbitrary partitioning of input variables into m
blocks, a random block restriction picks a uniformly random block ` ∈ [m] and assigns 1 or −1,
uniformly at random, to all variable outside the chosen block `. We prove the Block Restriction
Lemma saying that a PTF f of degree d becomes δ-close to constant when hit with a random
block restriction, except with probability at most (m−1/2 + δ) · (logm · log δ−1)O(d2).

As an application of our Restriction Lemma, we prove lower bounds against constant-depth
circuits with PTF gates of any degree 1 ≤ d�

√
log n/ log log n, generalizing the recent bounds

against constant-depth circuits with linear threshold gates (LTF gates) proved by Kane and
Williams (STOC, 2016) and Chen, Santhanam, and Srinivasan (CCC, 2016). In particular, we
show that there is an n-variate boolean function Fn ∈ P such that every depth-2 circuit with

PTF gates of degree d ≥ 1 that computes Fn must have at least
(
n

3
2+

1
d

)
· (log n)−O(d2) wires.

For constant depths greater than 2, we also show average-case lower bounds for such circuits
with super-linear number of wires. These are the first super-linear bounds on the number of
wires for circuits with PTF gates. We also give short proofs of the optimal-exponent average
sensitivity bound for degree-d PTFs due to Kane (Computational Complexity, 2014), and the
Littlewood-Offord type anticoncentration bound for degree-d multilinear polynomials due to
Meka, Nguyen, and Vu (Theory of Computing, 2016).

Finally, we give derandomized versions of our Block Restriction Lemma and Littlewood-
Offord type anticoncentration bounds, using a pseudorandom generator for PTFs due to Meka
and Zuckerman (SICOMP, 2013).
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1 Introduction

Random restrictions of boolean functions play an important role in the circuit complexity research.
One way to prove that a certain boolean function h is not computable by a class C of boolean
circuits is to show that (1) every boolean function f ∈ C becomes “simplified” after a random
restriction (which randomly fixes some random subset of variables of f), and (2) the function h
“remains hard” after a random restriction. This strategy has been successfully applied to prove
circuit lower bounds for explicit boolean functions against (i) de Morgan formulas [Sub61, And87],
(ii) AC0 circuits [Ajt83, FSS84, Yao85, H̊as89], and (iii) constant-depth circuits with LTF (linear
threshold function) gates [IPS97, CSS16, KW16]. In most of these results, the notion of “simplified”
means that a restricted function is (almost) a constant function; the hard function h is the parity
function, which is the ultimate example of a function that cannot be made (close to) constant under
any restriction that leaves enough variables unrestricted.

Lower bounds against constant-depth circuits with PTF gates. One of the original mo-
tivations for the present work was to extend the lower bounds of [CSS16, KW16] to the class of
constant-depth circuits consisting of general Polynomial Threshold Function (PTF) gates. Re-
call that a degree-d PTF is defined to be the sign of a multilinear degree-d polynomial over the
reals. Constant-depth PTF circuits are quite powerful. Every n-variate boolean function com-
putable by a polynomial-size AC0[m] circuit (constant-depth circuits with AND, OR, NOT, and
mod m gates), for any integer m > 1, has an equivalent depth-2 circuit of quasipolynomial size
with d-degree PTF gates, for d ≤ poly(log n) [All89, Yao90]. Moreover, every boolean function
computable by a polynomial-size AC0 circuit can be well approximated by a single PTF gate of
degree d ≤ poly(log n) [LMN93].

We prove circuit lower bounds against constant-depth PTF circuits of super-constant degree d
as long as d�

√
log n/ log logn. This is close to the best possible given the current knowledge, as

virtually nothing is known for PTFs of degree bigger than log n. We state our circuit lower bounds
below in Section 1.2. Our main technical tool is a restriction lemma for PTFs, which we discuss
next.

Restriction Lemmas. Let f(x1, . . . , xn) be a boolean function assuming the values {1,−1} over
the boolean cube {−1, 1}n. For a parameter 0 < r < 1, a random r-restriction is defined to leave
each variable free (unrestricted) with probability r, and, otherwise (with probability 1− r), fixing
the variable to either 1 or −1 uniformly at random. For a parameter 0 < δ < 1, we say that a
boolean function g is δ-close to constant if, for some v ∈ {−1, 1}, we have g(x) = v for all but at
most δ fraction of boolean inputs x. We show that a PTF f of degree d is likely to become δ-close
to constant after being hit with a random r-restriction: for δ ≤ r, the probability that f fails to
become δ-close to constant is at most

√
r · (log r−1 · log δ−1)O(d2).

This Restriction Lemma for PTFs is sufficient to derive the aforementioned lower bounds against
constant-depth PTF circuits. Moreover, it can also be used to re-derive (as an immediate corollary)
the optimal-exponent average sensitivity bound for degree-d PTFs due to Kane [Kan14]. But
perhaps more interestingly, this Restriction Lemma for PTFs is a consequence of a more general
Restriction Lemma for degree-d polynomials, which has other applications.

First, we generalize our PTF Restriction Lemma to the case of “structured” random restrictions.
Suppose that the variables of a given boolean function f(x1, . . . , xn) are partitioned into m disjoint
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subsets (blocks) of variables. Given such a block partition, a random block restriction is defined
as follows: pick a uniformly random block ` ∈ [m], and assign each variable outside the chosen
block ` a uniformly random value in {−1, 1}. We show that a degree-d PTF f with an arbitrary
block partition into m blocks is likely to become δ-close to constant after being hit with a random
block restriction: for δ ≤ 1/m, the probability that f fails to become δ-close to constant is at most
m−1/2 · (logm · log δ−1)O(d2). It is not hard to see that a PTF Restriction Lemma for r-random
restrictions is a corollary of the m-block Restriction Lemma when m = 1/r.

The PTF Block Restriction Lemma mentioned above is a consequence of the following Block
Restriction Lemma for polynomials. If a multilinear degree-d polynomial with a given block par-
tition into m blocks is hit with a random block restriction, it is likely to become “concentrated”
in the sense that its standard deviation becomes quite small relative to its expectation. It can
be shown that if a polynomial is concentrated, then the sign function of this polynomial (i.e., the
corresponding PTF) is close to a constant function. Thus, the PTF Block Restriction Lemma
follows. In addition, this structural property of a polynomial becoming “concentrated” under ran-
dom block restrictions is also useful for proving Littlewood-Offord type anticoncentration results
for polynomials.

Littlewood-Offord type anticoncentration bounds. Let p be an arbitrary n-variate degree-
d multilinear polynomial containing at least t disjoint maximal monomials (i.e., not contained in
other monomials), each with a coefficient at least 1 in magnitude. Meka et al. [MNV16] showed
that it is unlikely that, for a random x ∈ {−1, 1}n, the value p(x) will fall in the interval [0, 1]:
the probability that p(x) ∈ [0, 1] is at most (1/

√
t) · (log t)O(d log d) · exp(d2 log d). We re-derive this

result, in a simple way, from our Block Restriction Lemma for polynomials. Moreover, we also
prove a derandomized version of this bound, which we discuss next.

Derandomized Block Restriction Lemma and derandomized Littlewood-Offord. A ran-
dom block restriction chooses a uniformly random block, and then assigns uniformly random values
to all variables outside that block. Our Block Restriction Lemma says that such a random block
restriction is likely to make an n-variate degree-d multilinear polynomial “concentrated”. A deran-
domized version of this lemma would say that a similar conclusion is true for block restrictions that
can be sampled with significantly fewer random bits. We prove such a derandomized version for

pseudorandom m-block restrictions that are sampled using about (logm)O(d2) · log n random bits.
We then use this derandomized version of the Block Restriction Lemma to obtain derandom-

izations of the Littlewood-Offord type bounds. We show that there is an efficient pseudorandom
generator for sampling inputs x ∈ {−1, 1}n, using significantly fewer than n random bits, such that
the following holds. For any degree-d multilinear polynomial p with many degree-d monomials that
have large coefficients, it is unlikely that p(x) ∈ [0, 1] for these pseudorandom inputs x ∈ {−1, 1}n.
No derandomized versions of the Littlewood-Offord type anticoncentration bounds were previously
known.

Next we provide more details about our main results and our proof techniques.

1.1 Circuit complexity

One of the main goals of complexity theory is to understand the computational power of efficient
nonuniform algorithms (circuits). As the general class of polynomial-size boolean circuits (nonuni-
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form P, or P/poly) seems well beyond the currently known methods for proving lower bounds,
the focus of circuit complexity research has been on various restricted circuit classes. Particularly
successful has been the study of constant-depth circuits (which can be thought of as very efficient
parallel nonuniform algorithms).

Different natural sets of gates (elementary logical operations) were considered. For the gates
AND, OR, and NOT (where AND and OR have unbounded fanin), the resulting circuit class is
AC0. A milestone in circuit complexity was the proof that the parity function on n bits requires
exponential-size AC0 circuits (with a matching upper bound also known) [Ajt83, FSS84, Yao85,
H̊as89]. Adding the parity gate to AC0 circuits, we get the class AC0[2] with modulo 2 gates. An
exponential lower bound against AC0[2] for the n-bit majority function was shown by Razborov
[Raz87], and was extended by Smolensky [Smo87] to exponential lower bounds against AC0[p],
for an arbitrary prime modulus p > 0. It is still open (though widely believed) whether the
majority function requires exponential size also for the class AC0[m] for any composite modulus
m > 1; significant progress has been recently made by Williams [Wil14] who showed that a boolean
function computable in nondeterministic exponential time (NEXP) requires superpolynomial-size
AC0[m] circuits, for any integer modulus m > 1.

Adding the majority gate to AC0 circuits, we get the class TC0, for which no superpolynomial
circuit lower bounds are known for any explicit function (not even for a function in NEXP), despite
serious efforts by complexity researchers over the past thirty years. One reason for our inability
to prove strong lower bounds against TC0 stems from the fact that TC0 is a powerful circuit class,
capable of computing many interesting and useful functions: addition, multiplication, division,
and sorting (see [Raz92] and the references therein). Surprisingly, every function computable by
a polynomial-size AC0[m] circuit, for any integer m > 1, has an equivalent depth-3 TC0 circuit
of quasipolynomial size [All89, Yao90]. Moreover, TC0 is conjectured to be capable of computing
cryptographically secure pseudorandom function generators [NR04], which, coupled with arguments
in [RR97], means that it is highly unlikely that a “usual” (termed “natural” by Razborov and
Rudich [RR97]) lower bound proof method would work against TC0, as any such “natural” proof
would yield an efficient algorithm to break every candidate pseudorandom function generator in
TC0.

As it seems very difficult to prove superpolynomial lower bounds against TC0, the focus has
shifted to proving fixed-polynomial lower bounds (even for a fixed constant depth, say depth 2 or
3). Before discussing these results, let us mention another motivation for studying TC0. Closely
related to the majority function is a Linear Threshold Function (LTF), defined as the sign of a
linear (degree 1) polynomial in variables x1, . . . , xn; when the variables xi assume boolean values,
the resulting LTF is a boolean function. Note that an LTF may have arbitrarily large coefficients
(weights) for the underlying linear polynomial, which makes an LTF provably more powerful than
a majority function, or more generally, than an LTF with small (polynomially bounded) weights
[MK61]. On the other hand, somewhat surprisingly, an arbitrary LTF can be represented by a
polynomial-size depth-2 TC0 circuit [GHR92].

Linear Threshold Functions (LTFs) and circuits with LTF gates have been studied since at least
the 1940s in the context of artificial neural networks [MP43] (see [Ant01] and the references therein).
Some of the early lower bounds for LTFs are due to Minsky and Papert [MP69], who showed, for
example, that the parity function cannot be computed by any LTF. Minsky and Papert [MP69] also
considered Polynomial Threshold Functions (PTFs), defined as the sign of an arbitrary degree-d
polynomial in x1, . . . , xn, and showed that the n-bit parity function requires a PTF of degree n.
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Apart from minimizing the degree of a PTF f = sgn(p), it is also natural to minimize its sparsity,
defined as the number of monomials in the polynomial p. This particularly makes sense if we view
a PTF as a depth-2 circuit computing an LTF of parities of subsets of input variables (where the
parities correspond to monomials of p when the boolean variables are assumed to be from {−1, 1}).
Superpolynomial lower bounds on the PTF sparsity for simple boolean functions were shown by
Bruck [Bru90] (see also [BS92] for the complementary upper bounds on the sparsity of PTFs).

For constant-depth LTF circuits, two complexity measures have been considered: the number of
gates (excluding the input variables), and the number of wires. The first super-linear wire complex-
ity bound was obtained by Impagliazzo et al. [IPS97], who showed that the n-bit parity function
requires depth-D LTF circuits with at least n1+εD wires, where εD = exp(−D). They also showed
that the n-bit parity function requires depth-D LTF circuits with at least (n/2)1/(2(D−1)) gates. Re-
cently, these bounds were generalized to average-case (correlation) bounds by Chen et al. [CSS16].
For depth-2 LTF circuits, Kane and Williams [KW16] have recently proved an n3/2/poly(log n)
gate complexity bound, and n5/2/poly(log n) wire complexity bound for an explicit function in P
(Andreev’s function [And87]). In a more recent result, Alman et al. [ACW16] showed a fast satis-
fiability algorithm for ACC0 ◦ LTF ◦ LTF circuits with sub-quadratic number of LTF gates on the
bottom layer and sub-exponential number of gates on the other layers, and hence obtained lower
bounds against these circuits for an explicit function in ENP, using the connection between satisfi-
ability algorithms and circuit lower bounds due to Williams [Wil13, Wil14]. Also, Tamaki [Tam16]
has recently showed a fast satisfiability algorithm and lower bounds for depth-2 LTF circuits with
sub-quadratic number of gates.

Circuits with PTF gates of degree d > 1 were previously studied by Nisan [Nis94]. Using
multi-party communication complexity lower bounds, Nisan proved exponential correlation bounds
against circuit with Ωd(n

1−o(1)) PTF gates of degree d. We are not aware of any prior work on
circuits with PTF gates of degree d > 1 that would prove either super-linear wire complexity lower
bounds or super-linear gate complexity lower bounds.

1.2 Our contributions

Lower bounds for constant-depth PTF circuits. We generalize the lower bounds of [KW16]
and [CSS16] to the case of constant-depth circuits with PTF gates of degree d ≥ 1. For the case
of d = 1, our results match those obtained in [KW16, CSS16]. For d > 1, these appear to be the
first super-linear wire complexity lower bounds against constant-depth circuits with degree-d PTF
gates.

The following generalizes the lower bounds against LTF circuits of depth 2 of [KW16].

Theorem 1.1. There is an n-variate boolean function Fn ∈ P such that every depth-2 circuit with

PTF gates of degree d ≥ 1 that computes Fn must have at least
(
n

1
2

+ 1
d

)
· (log n)−O(d2) gates, and

at least
(
n

3
2

+ 1
d

)
· (log n)−O(d2) wires.

We also generalize to PTF gates (and somewhat strengthen) a lower bound of [KW16] for
depth-3 circuits that have the Majority gate at the top, with depth-2 LTF circuits feeding in.

Theorem 1.2. There is a polynomial-time computable boolean function B such that the following
holds. For any 1

logn � ε < 1, let C be a majority vote of depth-2 circuits with degree-d PTF gates
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such that the top majority gate has fanin at most 2n
ε

and the total fanin of the gates on the bottom

layer at most w =
(
n

3
2

+ 1
d

)
· (nε · log n)−c·d

2

, where c is a constant. Then C cannot compute B.

For boolean functions f, g : {−1, 1}n → {−1, 1}, define the correlation between f and g as

Corr(f, g) =
∣∣∣Expx∼{−1,1}n [f(x) · g(x)]

∣∣∣ .
Let Parn denote the n-input parity function. We generalize the correlation bounds of [CSS16],
getting the following.

Theorem 1.3. For any D ≥ 1 and 1 ≤ d �
√

log n/ log log n, let C be any depth-D circuit on n
inputs with degree-d PTF gates, of wire complexity at most n1+εD , where εD = B−(2D−1), for some
constant B > 0. Then we have

Corr(C,Parn) ≤ O
(
n−εD

)
.

Theorem 1.4. There is an n-variate boolean function Gn ∈ P such that the following holds. For
any D ≥ 1 and 1 ≤ d � (log n/ log logn)1/(2D−1), let C be any depth-D circuit on n inputs with
degree-d PTF gates, of wire complexity at most n1+µD,d, where µD,d = (E · d)−(2D−1), for some
constant E > 0. Then we have

Corr(C,Gn) ≤ exp(−nµD,d/2).

Restriction lemmas for polynomials. Our main tool is the following structural lemma showing
that a PTF is likely to become an almost constant function after being hit with a random restriction.
Below, we denote by ρ ∼ Rr the process of picking a random restriction ρ that leaves a variable
free with probability r, and otherwise fixes uniformly at random to 1 or −1. We denote by fρ the
function f restricted by ρ. We say that a boolean function f is δ-close to constant if, for some
value v ∈ {−1, 1}, we have f(x) = v for all but at most δ fraction of boolean inputs x.

Lemma 1.5 (PTF Restriction Lemma). For any PTF f(x) = sgn(p(x)) of degree d ≥ 1, and any
0 < δ, r ≤ 1/16, we have

Prρ∼Rr [fρ is not δ-close to constant] ≤ (
√
r + δ) · (log r−1 · log δ−1)O(d2).

We note that the bound r1/2 in this lemma has an optimal exponent.
The above lemma is a consequence of a more general result, the Block Restriction Lemma,

which deals with certain structured restrictions that we define next. Suppose the variables of a
given function are arbitrarily partitioned into m blocks. For the given block partitioning, a random
block restriction ρ ∼ Bm is defined by picking a block ` ∈ [m] uniformly at random, and assigning
each variable outside block ` the value 1 or −1 uniformly at random. We show that, for an arbitrary
partitioning of input variables into m blocks, the probability that a degree-d PTF is not δ-close to
constant, after being hit with a random block restriction ρ ∼ Bm, is at most the same as the bound
in the PTF Restriction Lemma above, with r = 1/m.

Lemma 1.6 (Block Restriction Lemma: Simplified version). For any PTF f(x) = sgn(p(x)) of
degree d ≥ 1, any m ≥ 16 , and any 0 < δ ≤ 1/16, we have

Prρ∼Bm [fρ is not δ-close to constant] ≤ (m−1/2 + δ) · (logm · log δ−1)O(d2).
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Note that a standard random restriction ρ ∼ Rr can be obtained by first randomly partitioning
the input variables into m = 1/r blocks, and then applying a random block restriction from Bm.
So the Block Restriction Lemma implies the PTF Restriction Lemma.

Our actual Block Restriction Lemma (Lemma 5.1) shows something even stronger. If a degree d
multilinear polynomial p is hit with a random block restriction, it becomes “concentrated around the
expectation” in the sense that its standard deviation becomes quite small relative to its expectation
(in particular, implying that the restriction of the PTF sgn(p) is close to constant).

Other applications. Apart from the aforementioned circuit lower bound applications, our Block
Restriction Lemma also immediately implies two other results. We get the average sensitivity bound
on degree-d PTFs, with an optimal exponent, first shown by Kane [Kan14] in the context of the
Gotsman-Linial conjecture [GL94]; see Theorem 6.13 below.

We also get the following Littlewood-Offord type anticoncentration bound for degree-d multi-
linear polynomials, due to Meka et al. [MNV16], which is an extension of the classical Littlewood-
Offord result for linear polynomials [LO43, Erd45].

Theorem 1.7 ([MNV16]). For any real interval I, and any n-variate degree-d multilinear polyno-
mial p such that there exists a set of t disjoint monomials in p, each of which is maximal (i.e., not
contained by any other monomials) and has coefficient at least |I| in magnitude, we have

Pr[p(A) ∈ I] ≤ t−1/2 · (log t)O(d log d) · 2O(d2 log d),

where A is the uniform distribution over {−1, 1}n.

Derandomization. We prove a derandomized version of the Block Restriction Lemma mentioned
above.

Theorem 1.8 (Derandomized Block Restriction Lemma: Simplified version). For any 0 < δ ≤ 1/16
and 0 < ζ < 1, there is a polynomial-time algorithm for sampling block restrictions ρ ∈ Bm, for any
m ≥ 16, that uses at most mζ · log n random bits, so that the following holds. For any n-variate
degree-d PTF f whose variables are partitioned into m blocks, we have

Prρ [pρ is not δ-concentrated] ≤
(
m−1/2 + δ

)
·
(
logm · log δ−1

)O(ζ−1·d2)
.

Our actual version of this lemma (see Theorem 7.1) shows that a degree-d polynomial p is likely
to become “concentrated” under a pseudorandom block restriction. This in turn is used to prove
the following derandomized versions of Theorem 1.7.

Theorem 1.9. For any positive integers t and d, and 0 < ζ < 1, there exists a distribution D on
{−1, 1}n, samplable in poly(n) time using tζ/d · log n random bits, such that the following holds. For
any real interval I, and any n-variate degree-d multilinear polynomial p that has at least t disjoint
degree-d monomials with coefficient at least |I| in magnitude, we have

Pr [p(D) ∈ I] ≤ t−
1
2d · (log t)O(ζ−1·d2).

Theorem 1.10. For any positive integers t and d, and 0 < ζ < 1, there exists a distribution D
on {−1, 1}n, samplable in poly(n) time using tζ · log n random bits, such that the following holds.
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For any real interval I, and any n-variate degree-d multilinear polynomial p with at least t · nd−1

degree-d monomials whose coefficients are at least |I| in magnitude, we have

Pr [p(D) ∈ I] ≤ t−
1
2 · (log t)O(ζ−1·d2).

Note that it is possible to use PRGs for PTFs directly to get a derandomized Littlewood-
Offord anticoncentration bound. However, using the best currently known PRGs for PTFs, such a
derandomization will have large error and seed length. In particular, for dense polynomials with
t = n1−o(1), Theorem 1.10 achieves error less than 1/n0.49 with the seed size at most polylogarithmic
in n; such parameters are beyond reach of the best available PRGs for PTFs.

1.3 Related work

Random restrictions. The concept of random restrictions for boolean functions was introduced
by Subbotovskaya [Sub61], who applied it to show that the n-bit parity function requires de Morgan
formulas1 of size Ω(n1.5) (later improved to the optimal bound Ω(n2) by [Khr71]). Andreev [And87]
combined random restrictions with a counting argument to show a stronger lower bound against de
Morgan formulas for a function in P (resulting in the n3/poly(log n) bound, when using H̊astad’s
improved restriction lemma for de Morgan formulas [H̊as98]). Random restrictions were also used
for showing the aforementioned exponential lower bounds against AC0 circuits computing the parity
function [Ajt83, FSS84, Yao85, H̊as89], as well as for the lower bounds against constant-depth LTF
circuits by [IPS97, CSS16, KW16]. A common feature in all of these lower bound proofs is a
structural result showing how “easy” boolean functions (of appropriately small formula or circuit
complexity) become much “simpler” (e.g., become almost constant) after being hit with random
restrictions. In contrast, the parity function is the ultimate “restriction-resistant” function that
does not simplify under random restrictions, but rather stays the parity function (albeit on a smaller
number of variables).

Two classical examples of restriction lemmas are the Shrinkage Lemma for de Morgan formulas
[Sub61, IN93, PZ93, H̊as98, Tal14], and H̊astad’s Switching Lemma for AC0 circuits [H̊as89] (see
also [RST15, H̊as16]). The Shrinkage Lemma says that a de Morgan formula of size s is expected to
shrink to size about r2 ·s, after being hit with a random restriction ρ ∼ Rr that leaves each variable
free with probability r, and otherwise fixes the variable to a uniform bit. H̊astad’s Switching Lemma
says that any given k-cnf formula (the conjunction of clauses of size at most k each) is very likely
to become expressible as a k-dnf (the disjunction of size-k terms), after being hit with a random
restriction ρ ∼ Rr for r = O(1/k). By repeatedly applying this Switching Lemma to a given AC0

circuit (of not too large size), level by level, we can merge the adjacent levels, thereby collapsing
the original circuit to depth at most 2. Once the original AC0 circuit is thus “simplified”, one can
argue directly that the new circuit is too weak to compute the restriction of the original function
(e.g., the parity function).

A similar strategy was used by Impagliazzo et al. [IPS97] to show that the parity function is
hard for constant-depth LTF circuits. The main technical result of [IPS97] shows that a depth d
LTF circuit (of not too large size) can be reduced to a depth d − 1 LTF circuit by fixing not too
many input variables. This is argued by showing that there exists a particular restriction of input
variables, chosen adaptively, that will make all LTF gates at the bottom level of the circuit to be
constants (or depend on at most one input). To extend the worst-case lower bounds of [IPS97] to

1De Morgan formulas are built using AND, OR, and NOT gates.
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the average-case correlation bounds, Chen et al. [CSS16] extended the restriction lemma of [IPS97]
to the setting of truly random, non-adaptive restrictions. So too did Kane and Williams [KW16]
to get a lower bound against depth-2 LTF circuits for Andreev’s function; their restriction lemma
is for certain “block-structured” random restrictions, as required by Andreev’s original argument.

Our restriction lemma, Lemma 1.5, can be used to re-derive the same lower bounds (up to
polylogarithmic factors) for LTF circuits as in [CSS16, KW16]. Moreover, it extends these lower
bounds to the case of PTF gates of any degree d�

√
log n/ log log n.

Comparison with [KW16], [CSS16] and [Nis94]. Kane and Williams [KW16] prove an LTF
Restriction Lemma with similar parameters to our PTF Restriction Lemma (for d = 1), for certain
random block restrictions and for the case of the restricted LTF becoming a constant function
(rather than close to constant). For the proof, they rely on the Littlewood-Offord lemma from
additive combinatorics [LO43, Erd45]. It is not clear how to extend such a proof to the case of
higher degree PTFs.

Chen et al. [CSS16] obtain a quantitatively weaker version of the LTF Restriction Lemma,
using proof techniques similar to ours, but with worse parameters. We get better (almost optimal)
parameters for both LTFs and higher degree PTFs, by using the more refined proof techniques
developed in [Kan14].

Nisan [Nis94] obtains an almost linear Ωd(n
1−o(1)) gate complexity lower bound against circuits

with degree-d PTF gates of any depth. The technique used by Nisan is based on communication
complexity and is quite different from the technique in [KW16], [CSS16] and this work. It is not
clear how such techniques can be used to obtain super-linear lower bounds in the setting of either
wire complexity or gate complexity. For degree d = 1, our lower bound for depth-2 PTF circuits
matches the super-linear n1.5−o(1) gate complexity lower bounds against depth-2 LTF circuits first
shown in [KW16]. For higher degrees, this result cannot give super-linear lower bounds and does
not match Nisan’s lower bounds. However, both our results for depth-2 and higher constant depth
PTF circuits give super-linear wire complexity lower bounds, which is not implied by [Nis94] or
prior work.

Lower bounds against TC0. For depth-2 circuits with majority gates (equivalently, LTF gates
with polynomially small weights), Hajnal et al. [HMP+93] showed an exponential size lower bound
for the Inner Product modulo 2 (IP2) function. For the parity function, Paturi and Saks [PS94]
showed a nearly optimal Ω̃(n) gate complexity lower bound against depth-2 majority circuits. This
was extended by Siu et al. [SRK94] to depth-D such circuits, showing that n-bit Parity requires at
least Ω̃(D · n1/(D−1)) gates; they also showed a matching upper bound of O(D · n1/(D−1)) gates.

Goldmann et al. [GHR92] (improving upon [SB91]) proved a surprising result that any general
LTF circuit of constant depth D has an equivalent majority circuit of polynomially related size
and depth D + 1. Thus any superpolynomial lower bound against majority circuits of constant
depth D would immediately yield a superpolynomial lower bounds against general LTF circuits of
depth D − 1. (This connection may explain the lack of any strong lower bounds even for depth-3
majority circuits.) Allender and Koucký [AK10] show that proving superpolynomial circuit lower
bounds against TC0 circuits (for an NC1-complete function) is equivalent to proving super-linear,
n1+ε, lower bounds for every depth D ≥ 2, where ε > 0 is independent of the depth D.

8



PTFs. PTFs have also been studied in the context of learning [STT12, DOSW11, DSTW14],
pseudorandomness [DGJ+10, DKN10, Kan11, Kan12, MZ13, Kan14, Kan15], approximate counting
[DDS14, DS14], and extremal combinatorics [Sak93, GL94, OS08, DRST14, Kan14].

1.4 Our proof techniques

Block Restriction Lemma. The proof of our Block Restriction Lemma (Lemma 1.6) relies on
the techniques in [Kan14]. An oversimplified proof sketch is as follows. We first show that if a
degree-d multilinear polynomial is not “concentrated” (i.e., has the standard deviation much larger
that the expectation), then it is expected to have a relatively large directional derivative compared
to its actual value. We then use anticoncentration bounds for polynomials to argue that it is
unlikely that a random restriction of a degree-d multilinear polynomial will have such a property.

One issue is that strong enough anticoncentration bounds for polynomials (e.g., the Carbery-
Wright bound [CW01], or the bound from [Kan14] that we will actually use) are true only under
the Gaussian measure rather than the uniform distribution over the boolean cube. To use these
anticoncentration results, we thus need to move from the Bernoulli distribution to the Gaussian
distribution over the inputs of polynomials. Such change of the probability measure is possible
thanks to the celebrated Invariance Principle of [MOO10]. It applies to “regular” polynomials only,
but fortunately there is a “regularity lemma” of [DSTW14] (or a variant from [Kan14]) that allows
one to reduce the analysis of arbitrary polynomials to the case of regular ones, at a small cost.

The next problem is that the Invariance Principle incurs significant (and unavoidable) losses
that have a bad dependence on the degree d of the polynomial in question. To mitigate such losses,
we apply a random block restriction ρ in a series of few steps, viewing ρ as a composition of t
restrictions ρ1 ◦ ρ2 ◦ · · · ◦ ρt (for not too large value t ≥ 1), where each ρi is on relatively small
number of blocks mi. This allows us to ensure that the loss from the Invariance Principle at each
step i is “absorbed” by the parameter mi.

Thus we get a recursive proof, where in each step we apply the regularity lemma, the Invariance
Principle, and the anticoncentration bound. Carrying out such a proof directly, we get a weak
version of the Block Restriction Lemma (see Lemma 4.1). By a more careful recursive analysis
(using a “soft” measure of “non-concentration” for polynomials), we get the stronger version stated
in Lemma 5.1.

Derandomized Block Restriction Lemma. To prove a derandomized version of the Block
Restriction Lemma (Theorem 1.8), we first observe that a block restriction ρ makes a given degree-
d polynomial “concentrated” if and only if a certain PTF of degree 2d evaluates to −1 on ρ. Thus
finding a good-restriction ρ is reduced to the task of fooling degree-2d PTFs. For the latter, we can
use known constructions of pseudorandom generators (PRGs) for PTFs, e.g., the construction due
to Meka and Zuckerman [MZ13]. Unfortunately, the parameters of the known PRGs for PTFs are
far from optimal. Using such a PRG in a single step would yield a derandomized Block Restriction
Lemma with very poor parameters. Instead, we use a recursive strategy similar to the recursive
proof of Lemma 1.6 above. We build a pseudorandom block restriction in a sequence of steps,
where in each single step we are facing a block partition on a relatively small number of blocks,
and so can afford the relatively poor parameters of the PRG construction from [MZ13].

Derandomized Littlewood-Offord. To prove Theorem 1.9 and Theorem 1.10, we first argue
that bounded-wise independent hash functions can be used to produce a block partition of input

9



variables such that, with high probability, every polynomial p satisfying the assumptions of these
theorems will contain within each block a high-degree monomial with a large coefficient. Once
we have a good partition, we can use our derandomized Block Restriction Lemma to generate the
required pseudorandom inputs x for the polynomial p so that p(x) is unlikely to be contained within
a small interval.

Remainder of the paper. We give the necessary background in Section 2. In Section 3, we
prove a simpler Block Restriction Lemma as a warm-up. In Section 4, we prove another Block
Restriction Lemma that achieves the optimal exponent in the parameter m (the number of blocks).
It is a weaker version of our final Block Restriction Lemma, which illustrates our proof techniques.
The stronger version is then proved in Section 5. In Section 6, we give our applications of the
Block Restriction Lemma: we prove Theorems 1.1–1.4; re-derive Kane’s average sensitivity bound
for degree-d PTFs in Section 6.4; and show a Littlewood-Offord type anticoncentration bound for
degree-d multilinear polynomials in Section 6.5. We prove our derandomized restriction lemma and
derandomized Littlewood-Offord type anticoncentration bounds in Section 7. Section 8 contains
some open problems.

2 Preliminaries

Here we present some definitions and results on polynomials and polynomial threshold functions,
and introduce some basic notions in the analysis of boolean functions. For more details on these
(and related) topics, the reader is referred to [O’D14].

2.1 Notation

We will denote by X,Y, Z standard multidimensional Gaussian random variables. That is, for
dimension n, we have X ∼ N(0, 1)n, where X = (X1, . . . , Xn) and all components Xi ∼ N(0, 1)
are independent Gaussians. Similarly, we denote by A,B,C multidimensional Bernoulli variables,
where, for dimension n, A = (A1, . . . , An), and all components Ai ∼ {−1, 1} are independent fair
coin flips. Occasionally, for results that hold for both Gaussian and Bernoulli distributions, we
use I, J to denote distributions that may be either standard n-dimensional Gaussian, or Bernoulli
distributions.

2.2 Boolean functions and polynomial threshold functions

We think of an n-variate boolean function f as f : {−1, 1}n → {−1, 1}. For two boolean func-
tions f, g : {−1, 1}n → {−1, 1} and a parameter δ ∈ [0, 1], we say that f and g are δ-close if
Prx∈{−1,1}n [f(x) 6= g(x)] ≤ δ. We say that a Boolean function f is δ-close to constant if there is a
constant function v, where v = −1 or v = 1, such that f and v are δ-close.

Definition 2.1. A degree-d polynomial threshold function (PTF) is a function f : {−1, 1}n →
{−1, 1} of the form f = sgn(p), where p : Rn → R is a multilinear polynomial of degree at most
d, and sgn: R → {−1, 1} is the sign function defined to be 1 on all positive inputs, and −1 on all
negative inputs and on 0.2

2Without loss of generality, we may assume for every PTF f = sgn(p) that p(x) 6= 0 for all x ∈ {−1, 1}n. The
reason is that we may always change p to a new polynomial p̃ = p+ η, for a small constant η ∈ R, so that, for every
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2.3 Concentration and anticoncentration for polynomials

Definition 2.2 (Lt norm). For f : Rn → R and a real number t ≥ 1, the Gaussian (Bernoulli) Lt

norm of f is defined as

‖f‖t =
(
Exp[|f(I)|t]

)1/t
,

where I is an n-dimensional Gaussian (Bernoulli) random variable.

It is easy to see that the Gaussian and Bernoulli L2 norms are the same for any multilinear
polynomial p, i.e.,

Exp[|p(X)|2] = Exp[|p(A)|2].

We denote by ‖p‖2 the L2 norm of a multilinear polynomial p under Gaussian (or Bernoulli)
distribution. For multilinear polynomials p, we also have

Exp[p(X)] = Exp[p(A)].

Hence the variance of p is the same under Gaussian and Bernoulli measures, and we will denote
this variance by Var[p].

The hypercontractivity results of [Bon70] relate the Lt norm of a polynomial to its L2 norm,
both for Gaussian and Bernoulli measures. For multilinear d-degree polynomials p, the relevant
hypercontractive inequality is

‖p‖t ≤ (t− 1)d/2 · ‖p‖2 , (1)

where the Lt norm on the left-hand side may be either Gaussian or Bernoulli.
The following strong concentration bound for polynomials is an immediate consequence of Equa-

tion (1) and the Markov inequality.

Theorem 2.3 (Concentration bound). For every d-degree multilinear polynomial p : Rn → R, and
for every K ≥ 2d, we have

Pr [|p(I)| ≥ K · ‖p‖2] ≤ exp
(
−(1/4) ·K2/d

)
,

where I is an n-dimensional Gaussian or Bernoulli random variable.

The following weak anticoncentration result for polynomials is also an immediate consequence
of Equation (1) (for t = 4) and the Paley-Zygmund inequality (applied to p2).

Theorem 2.4 (Weak anticoncentration bound). For every d-degree multilinear polynomial p : Rn →
R, we have

Pr [|p(I)| ≥ (1/2) · ‖p‖2] ≥ (1/2) · 9−d,

where I is an n-dimensional Gaussian or Bernoulli random variable.

A stronger anticoncentration result for polynomial with respect to the Gaussian measure, due
to Carbery and Wright [CW01], shows that |p(X)| is likely to exceed ε · ‖p‖2.

Theorem 2.5 (Anticoncentration bound [CW01]). For any non-zero degree-d polynomial p and
any ε > 0, we have

Pr [|p(X)| ≤ ε · ‖p‖2] = O(d · ε1/d).
x ∈ {−1, 1}n, we have both sgn(p(x)) = sgn(p̃(x)) and p̃(x) 6= 0.
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The anticoncentration bound above has poor dependence on the degree d. For an improved
dependence on d, we use a version of the anticoncentration result due to Kane [Kan14], where
|p(X)| is compared to the directional derivative of p, rather than the norm of p.

Definition 2.6 (Directional derivative). For an n-variate function g(x1, . . . , xn) from Rn to R,
and u, v ∈ Rn, the directional derivative of g at u in the direction v, denoted Dv g(u), is defined as

Dv g(u) = v · ∇g(u),

where

∇g =

(
∂g

∂x1
, . . . ,

∂g

∂xn

)
is the gradient of g, and “·” denotes the usual inner product of vectors.

Theorem 2.7 (Strong anticoncentration bound [Kan14]). For any non-zero polynomial p of degree
d and any ε > 0, we have

Pr [|p(X)| ≤ ε · |DY p(X)|] = O
(
d2 · ε

)
.

This strong anticoncentration bound will be useful to us thanks to the following (easily provable)
identity:

Exp
[
|DJ p(I)|2

]
= Exp

[
‖∇p(I)‖22

]
, (2)

where I and J are either independent Gaussians, or independent Bernoulli distributions. In turn,
the quantity on the right-hand of Equation (2) can be related to the variance Var[p], via the notion
of influence, to be discussed in the next subsection.

We conclude this subsection with the following useful relationship between the directional deriva-
tive and the gradient.

Lemma 2.8. For any non-negative integer k and any degree-d multilinear n-variate polynomial p
such that p(x) 6= 0 for all x ∈ {−1, 1}n, we have

ExpA,B

[
min

{
k,
|DB p(A)|2

|p(A)|2

}]
≤ ExpA

[
min

{
k,
‖∇p(A)‖22
|p(A)|2

}]
, (3)

ExpA

[
min

{
k,
‖∇p(A)‖22
|p(A)|2

}]
≤ 72 ·ExpA,B

[
min

{
k,
|DB p(A)|2

|p(A)|2

}]
. (4)

Proof. Note that, for any random variable Z, we have Exp[min{k, Z}] ≤ k and Exp[min{k, Z}] ≤
Exp[Z]. Thus,

ExpA,B

[
min

{
k,
|DB p(A)|2

|p(A)|2

}]
≤ ExpA

[
min

{
k,ExpB

[
|DB p(A)|2

|p(A)|2

]}]
,

which implies Equation (3).
We now prove Equation (4). For a fixed A, let

qA(B) = B · ∇p(A)

|p(A)|
=

DB p(A)

|p(A)|
.
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Note that qA is a degree-1 polynomial in the variables B with ‖qA‖22 =
‖∇p(A)‖22
|p(A)|2 . Then by Theo-

rem 2.4, we have for every A that

Pr
B

[
|DB p(A)|2

|p(A)|2
≥ (1/4) ·

‖∇p(A)‖22
|p(A)|2

]
= Pr

B

[
|qA(B)|2 ≥ (1/4) · ‖qA‖22

]
≥ 1/18. (5)

Now let

X = X(A) =
‖∇p(A)‖22
|p(A)|2

,

and

Y = Y (A,B) =
|DB p(A)|2

|p(A)|2
.

By Equation (5), Y ≥ X/4 with probability at least 1/18. Next we have

ExpA,B [min {k, Y }] ≥ 1

18
·ExpA [ExpB [min {k, Y } | Y ≥ X/4]]

≥ 1

18
·ExpA [ExpB [min {k,X/4} | Y ≥ X/4]]

≥ 1

72
·ExpA [min {k,X}] ,

where in the last step we dropped the expectation over B since X does not depend on B.

2.4 Invariance principle for polynomials

For a boolean function f : {−1, 1}n → {−1, 1} and i ∈ [n], the influence of coordinate i on f ,
denoted Inf i[f ], is defined as

Inf i[f ] = Prx∼{−1,1}n [f(x) 6= f(x⊕i)],

where x⊕i is x with the ith coordinate xi replaced with −xi. The total influence (also known as
average sensitivity) of f : {−1, 1}n → {−1, 1}, denoted Inf [f ], is defined as

Inf [f ] =
n∑
i=1

Inf i[f ].

For a function f : {−1, 1}n → R, the definition of influence becomes:

Inf i[f ] =
1

4
·Expx∼{−1,1}n

[∣∣f(x)− f(x⊕i)
∣∣2] .

For the case of multilinear polynomials p : Rn → R, it can be equivalently expressed as follows:

Inf i[p] =

∥∥∥∥ ∂p∂xi
∥∥∥∥2

2

, (6)

yielding

Inf [p] = Exp
[
‖∇p(A)‖22

]
. (7)

The following is a well-known fact about influence; we sketch the proof for completeness.
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Theorem 2.9. For every d-degree multilinear polynomial p : Rn → R, we have

Var[p] ≤ Inf [p] ≤ d ·Var[p].

Proof. For a multilinear polynomial p(x1, . . . , xn) and a set S ⊆ [n], denote by p̂(S) the coefficient
of p at the monomial

∏
i∈S xi (the Fourier coefficient of p at S). The proof is obtained from the

following (easily verifiable) identities: Inf i[p] =
∑

S3i p̂(S)2, and Var[p] =
∑
∅6=S⊆[n] p̂(S)2.

Definition 2.10 (τ -regular). We say that a polynomial p is τ -regular if for all i.

Inf i[p] ≤ τ ·Var[p].

A polynomial threshold function f(x) = sgn(p(x)) is ε-regular if p is τ -regular.

The following result shows that, for every PTF f , there exists a partitioning of the boolean
cube {−1, 1}n into few sub-cubes so that, on most of these sub-cubes, the PTF f restricted to the
sub-cube is either regular or has small variance relative to its L2 norm.

Theorem 2.11 ([Kan14]). For all 1/4 > τ, δ, ε > 0 and γ > 0, every degree-d multilinear polyno-
mial p can be expressed as a decision tree of depth at most

τ−1 · (d · log τ−1 · log δ−1)O(γ·d) · log ε−1,

so that, with probability at least 1−ε, a random leaf ω (reached from the root of the tree by branching
uniformly at random at each internal node) defines a restricted polynomial pω (obtained from p by
setting the variables on the branch leading to ω to the values specified by the branch) such that the

polynomial pω(y) either is τ -regular or satisfies Var[pω] ≤
(
log δ−1

)−γ·d · ‖pω‖22.

The following is a version of the Invariance Principle of Mossel et al. [MOO10] in the form that
will be convenient for us.

Theorem 2.12 (Invariance principle [Kan14]). Let p and q be two polynomials such that for some
τ > 0, Inf i[p], Inf i[q] ≤ τ for all i and that ‖p+ q‖2 , ‖p− q‖2 ≥ 1. Then

Pr[|p(A)| ≤ |q(A)|] = Pr[|p(X)| ≤ |q(Y )|] +O
(
d · τ−1/8d

)
.

Corollary 2.13. For any d-degree τ -regular non-constant multilinear polynomial p, and any ε > 0,
we have

Pr[|p(A)| ≤ ε · |DB p(A)|] = O
(
d2 · ε+ d · τ−1/8d

)
.

Proof. The idea is to apply the Invariance Principle of Theorem 2.12, and then the strong anticon-
centration bound of Theorem 2.7. To this end, we need to argue that the assumptions of these two
theorems are satisfied. First, we normalize our polynomial p so that the new polynomial has all
influences at most τ .

For the given multilinear polynomial p(x1, . . . , xn), define

q(x1, . . . , xn, y1, . . . , yn) =
n∑
i=1

yi ·
∂p

∂xi
, (8)
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which is easily seen to be a multilinear polynomial of degree at most d. Let σ =
√

Var[p]. Since p
is a non-constant function, we have σ 6= 0. Define the normalized polynomial p′ = p/σ. We have
Var[p′] = 1, and, by the definition of influence in Equation (6), we also have for all i ∈ [n] that

Inf i[p
′] = Inf i[p]/Var[p]

≤ τ, (9)

since Inf i[p] ≤ τ ·Var[p] for all i ∈ [n] by assumption. By the linearity of differentiation, we also
get that q′ = q/σ is the directional derivative of p′. Thus our task is reduced to upper-bounding
the probability

Pr[|p′(A)| ≤ ε · |DB p′(A)|]. (10)

To apply the Invariance Principle of Theorem 2.12 to Equation (10), we need to upper-bound
the influences of q′. For every i ∈ [n], we get from Equations (8) and (9) that∥∥∥∥∂q′∂yi

∥∥∥∥2

2

=

∥∥∥∥ ∂p′∂xi

∥∥∥∥2

2

= Inf i[p
′]

≤ τ.

We also get ∥∥∥∥ ∂q′∂xi

∥∥∥∥2

2

= Exp

[∣∣∣∣DB ∂p′

∂xi
(A)

∣∣∣∣2
]

= Exp

[∥∥∥∥∇ ∂p′∂xi
(A)

∥∥∥∥2

2

]
(by Equation (2))

= Inf

[
∂p′

∂xi

]
(Equation (7))

≤ d ·Var

[
∂p′

∂xi

]
(by Theorem 2.9)

≤ d ·
∥∥∥∥ ∂p′∂xi

∥∥∥∥2

2

= d · Inf i[p
′] (by Equation (6))

≤ dτ. (by Equation (9))

Thus all of the influences of p′ and q′ are at most dτ .
Finally, for every λ ∈ R, we have for independent n-dimensional standard Gaussians A and B

that ∥∥p′ + λ · q′
∥∥2

2
= Exp

[
|p′(A) + λ · q′(A,B)|2

]
= Exp[|p′(A)|2] + λ2 ·Exp[|q′(A,B)|2] + (2λ) ·Exp[p′(A) · q′(A,B)]. (11)

By Equation (8), we get that Exp[p′(A) · q′(A,B)] = 0. Hence, we get from Equation (11) that
‖p′ + λ · q′‖22 ≥ ‖p′‖

2
2 ≥ Var[p′] = 1.

Thus p′ and q′ satisfy all assumptions of Theorem 2.12, with the influences bounded by dτ .
Applying Theorem 2.12 and then Theorem 2.7, we get the required upper bound on the probability
in Equation (10), concluding the proof.
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2.5 Random block restrictions and concentrated polynomials

Definition 2.14 (Random block restriction). Suppose the variables of a polynomial are arbitrarily
partitioned into m blocks. A random block restriction ρ is obtained by the following process:

1. Uniformly at random pick a block ` ∈ [m].

2. Assign each variable that is outside the chosen block ` a uniformly random value in {−1, 1},
independently.

We use Bm to denote the distribution over all possible restrictions ρ generated by the above process.

We need the following notion of “concentration” for polynomials.

Definition 2.15 (δ-concentrated polynomials). Let p be a degree-d multilinear polynomials and
f = sgn(p). For a universal constant L = 192, and parameters 0 < δ ≤ 1/2 and γ > 0, we call p
(and f) (δ, γ)-concentrated if

Var[p] ≤
(
L · log δ−1

)−γ·d · ‖p‖22 .
We refer to (δ, 1)-concentrated polynomials as δ-concentrated.

A useful property of concentrated PTFs is that they are close to constant.

Lemma 2.16. For every degree PTF f = sgn(p) and every 0 < δ ≤ 1/2, if p is δ-concentrated,
then f is δ2-close to constant.

Proof. Let p′ = p− µ, where µ = Exp[p(A)], and let ν = (L · log δ−1)d for a constant L > 0 to be
determined. Since p is δ-concentrated and ‖p‖22 = µ2 + Var[p], we get

µ2 ≥ (ν − 1) ·Var[p] ≥ ν

4
·Var[p],

for L ≥ 4/3. Thus we have

|µ| ≥
√
ν

2
·
∥∥p′∥∥

2
. (12)

Note that for all points x ∈ {−1, 1}n where |p′(x)| < |µ|, we have sgn(p(x)) = sgn(µ). Therefore,

Pr[sgn(p(A)) 6= sgn(µ)] ≤ Pr[|p′(x)| ≥ |µ|]

≤ Pr

[
|p′(x)| ≥

√
ν

2
·
∥∥p′∥∥

2

]
(by Equation (12))

≤ δ2, (by Theorem 2.3)

where the last inequality holds if we choose L ≥ 32.

3 Block Restriction Lemma: A simple bound

As a warm-up, we first prove a simpler bound on the probability that under random block restric-
tions, a degree-d multilinear polynomial does not become concentrated.

Lemma 3.1 (Block Restriction Lemma: Simple Bound). For any degree-d multilinear polynomial
p, and any m ≥ 16, γ ≥ 1, 0 < δ ≤ 1/16, we have

Prρ∼Bm [pρ is not (δ, γ)-concentrated] ≤ m−
1

8d+1 ·
(
d · logm · log δ−1

)O(γ·d)
+ 2δ.
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3.1 Regularization

In this section, we show that it suffices to consider only regular polynomials. We start with the
following definition.

Definition 3.2. Let P(d,m, δ, γ) be the supremum, over all degree-d multilinear polynomials p and
all possible partitions of the variables into m blocks, of the probabilities

Prρ∼Bm [pρ is not (δ, γ)-concentrated] .

Let Preg(d,m, δ, γ, τ) be the same as P but only for τ -regular polynomials. We will use P(d,m, δ)
(resp. Preg(d,m, δ, τ)) for P(d,m, δ, 1) (resp. Preg(d,m, δ, 1, τ)).

Claim 3.3. For any m ≥ 1/16, γ > 0, and 0 < δ, τ ≤ 1/4, we have

P(d,m, δ, γ) ≤ Preg(d, r, δ, γ, τ) +
1

m
· τ−1 ·

(
d · log τ−1 · log δ−1

)O(γ·d)
+ 2δ.

Proof. Let p be a degree-d multilinear polynomial with its variables petitioned into m blocks. By
Theorem 2.11, there exists a decision tree of depth at most

H = τ−1 · (d · log τ−1 · log δ−1)O(γ·d)

such that for a random leaf ω of the tree, the restricted polynomial pω (obtained from p by fixing
the variables on the branch leading to ω, as specified by the branch) is either τ -regular or (δ, γ+1)-
concentrated, with probability at least 1 − δ. The given decision tree partitions the boolean cube
{−1, 1}n into disjoint regions (sub-cubes) according to the partial restrictions labelling the branches
of the tree. Let us call a random restriction ρ partition-respecting if it is consistent with some partial
restriction labelling one of the branches of the decision tree (i.e., the restriction does not select a
block containing any of the variables appearing on the branch, and the assignment to those variables
agrees with their corresponding values on the branch). We claim that the probability that a random
restriction ρ ∼ Bm is not partition-respecting is at most H/m.

Indeed, first note that choosing a random restriction ρ ∼ Bm is equivalent to first picking a
uniformly random assignment to all variables, and then un-assigning the variables in a uniformly
random block i ∈ [m]. Picking a uniformly random assignment to all variables is equivalent to
picking a random branch in our decision tree (setting some of the variables to constants), and then
randomly assigning the remaining variables (not appearing on the branch). For each fixed variable
on the branch, the probability that its corresponding block is chosen when we pick a uniformly
random block i ∈ [m] is 1/m. It follows by the union bound that the overall probability that a
random block i ∈ [m] contains some variable from the given branch is at most H/m.

Thus, at the expense of the additive error term

H

m
=

1

m
· τ−1 ·

(
d · log τ−1 · log δ−1

)O(γ·d)
,

it suffices to upper-bound the probability

Prρ∼Bm [pρ is not (δ, γ)-concentrated]

only for partition-respecting restrictions ρ. This probability can be expressed as the expectation
over random leaves ω of the decision tree for f of the probability

Prρ′∼Bm [(pω)ρ′ is not (δ, γ)-concentrated],
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where fω is the restriction of f to the leaf ω, and ρ′ is a random restriction on the variables of fω
(those not fixed by the branch leading to ω).

Finally, as pω is neither τ -regular nor (δ, γ + 1)-concentrated with probability at most δ over
random leaves ω, and a polynomial that is (δ, 2)-concentrated will stay (δ, 1)-concentrated with
probability at least 1− δ by Lemma 4.2, we get that

P(d,m, δ, γ) ≤ Preg(d,m, δ, γ, τ) +
1

m
· τ−1 ·

(
d · log τ−1 · log δ−1

)O(γ·d)
+ 2δ,

as required.

3.2 Proof of the simple bound

Given Claim 3.3, it remains to upper-bound the quantity Preg(d,m, δ, γ, τ). Here we show the
following.

Lemma 3.4. There is a constant c > 0 such that, for any m ≥ 1/16, γ ≥ 1, and 0 < δ, τ ≤ 1/4,
we have

Preg(d,m, δ, γ, τ) ≤ O
(
d2
)
· (c · log δ−1)γ·d ·

(
m−1/2 + τ1/(8d)

)
.

First we prove the following property of non-concentrated polynomials.

Lemma 3.5. For any 0 < δ ≤ 1/4 and γ ≥ 1, if a degree-d multilinear polynomial p is not
(δ, γ)-concentrated, then

Pr
[
|DB p(A)|2 ≥ (1/16) ·

(
(9L) · log δ−1

)−γ·d · |p(A)|2
]
≥ (1/4) · 9−d,

where L > 0 is the constant from Definition 2.15.

Proof. For the given multilinear polynomial p(x1, . . . , xn), define

q(x1, . . . , xn, y1, . . . , yn) =

n∑
i=1

yi ·
∂p

∂xi
,

which is easily seen to be a multilinear polynomial of degree at most d. Applying Theorem 2.4 to
q, we get that

Pr
[
|q(C)|2 ≥ (1/4) · ‖q‖22

]
≥ (1/2) · 9−d. (13)

Next we relate ‖q‖22 to Var[p] as follows:

‖q‖22 = Exp
[
|DB p(A)|2

]
= Exp

[
‖∇p(A)‖22

]
(by Equation (2))

= Inf [p] (by Equation (7))

≥ Var[p]. (by Theorem 2.9)

Together with Equation (13), this implies that

Pr
[
|DB p(A)|2 ≥ (1/4) ·Var[p]

]
≥ (1/2) · 9−d. (14)
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Applying the Markov inequality to p2, we get

Pr
[
|p(A)|2 ≥ (4 · 9d) · ‖p‖22

]
≤ (1/4) · 9−d. (15)

We conclude from Equations (14) and (15) that, with probability at least (1/4) · 9−d, we have
both

|DB p(A)|2 ≥ (1/4) ·Var[p] (16)

and
|p(A)|2 ≤ (4 · 9d) · ‖p‖22 . (17)

As p is assumed to be (δ, γ)-concentrated, we also have

Var[p] ≥
(
L · log δ−1

)−γ·d · ‖p‖22 . (18)

Combining Equations (16) to (18) yields the required claim.

Definition 3.6. For p a non-zero polynomial, we define

α(p) : = Exp

[
min

{
1,
|DB p(A)|2

|p(A)|2

}]
.

By Lemma 3.5, we get the following.

Corollary 3.7. There is a constant c > 0 such that, for any 0 < δ ≤ 1/4 and γ ≥ 1, if a degree-d
multilinear polynomial p is not (δ, γ)-concentrated, then

α(p) ≥
(
c · log δ−1

)−γ·d
.

We are now ready to prove Lemma 3.4.

Proof of Lemma 3.4. For a block, `, we let A` denote the random assignment to the variables in `
and let A¯̀ denote the random assignment to the variables that are not in `. Then by the definition
of random block restriction, we have

Prρ∼Bm [pρ is not (δ, γ)-concentrated] =
1

m
·
∑
`

PrA¯̀[fA¯̀ is not (δ, γ)-concentrated]

≤ 1

m
·
∑
`

PrA¯̀

[(
c · log δ−1

)γ·d · α(pA¯̀) ≥ 1
]

(by Corollary 3.7)

≤ 1

m
·
∑
`

ExpA¯̀

[(
c · log δ−1

)γ·d · α(pA¯̀)
]

=
1

m
·
(
c · log δ−1

)γ·d ·∑
`

ExpA¯̀

[
α
(
pA¯̀

)]
. (19)
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We upper-bound the sum
∑

` ExpA¯̀

[
α
(
pA¯̀

)]
in Equation (19) as follows:

∑
`

Exp

[
min

{
1,
|DB pA¯̀(A`)|2

|pA¯̀(A`)|2

}]
≤
∑
`

Exp

[
min

{
1,

∥∥∇pA¯̀(A`)
∥∥2

|pA¯̀(A`)|2

}]
(by Lemma 2.8)

≤ Exp

[
min

{
m,
‖∇p(A)‖2

|p(A)|2

}]

≤ 72 ·Exp

[
min

{
m,
|DB p(A)|2

|p(A)|2

}]
(by Lemma 2.8)

If p is a constant function, then its directional derivative is always 0, and hence the expectation
above becomes 0. Otherwise, for a non-constant p, we upper-bound this expectation by

Exp

[
min

{
1,
|DB p(A)|2

|p(A)|2

}]
+

∫ m

1
Pr
[
|p(A)| ≤ t−1/2 · |DB p(A)|

]
dt

≤ 1 +

∫ m

1
O
(
d2t−1/2 + dτ1/(8d)

)
dt (by Corollary 2.13)

≤ O(d2) ·
(√

m+m · τ1/(8d)
)
. (20)

Combining Equations (19) and (20), we conclude that

Prρ∼Bm [pρ is not (δ, γ)-concentrated] ≤ O
(
d2
)
· (c · log δ−1)γ·d ·

(
m−1/2 + τ1/(8d)

)
,

as required.

We can now finish the proof of Lemma 3.1.

Proof of Lemma 3.1. Combining Claim 3.3 and Lemma 3.4, we get

P(d,m, δ, γ) ≤ O
(
d2
)
· (c · log δ−1)γ·d ·

(
m−1/2 + τ1/(8d)

)
+ 2δ +

1

m
· τ−1 ·

(
d · log τ−1 · log δ−1

)O(γ·d)
.

Setting τ = m−
8d

8d+1 , we get the desired bound.

4 Block Restriction Lemma with Optimal Exponent: Weak ver-
sion

The bound in Lemma 3.1 has an undesirable dependence on the degree d in the exponent of the
interested parameter m. In this section, we prove a better bound that achieves the optimal exponent
in m. To illustrate the ideas of the proof techniques, we first prove the following weaker version.

Lemma 4.1 (Block Restriction Lemma: Weak Version). For any degree-d multilinear polynomial
p, and any m ≥ 16, γ ≥ 1, and 0 < δ ≤ 1/16, we have

Prρ∼Bm [pρ is not (δ, γ)-concentrated] ≤
(
m−1/2 + δ

)
·O
(
d · logm · log δ−1

)O(γ·d2·log logm)
.
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Our road map for the proof is as follows. We set up a recurrence (in Section 4.1), reducing the
analysis of random restrictions from Bm to that of random restrictions from Bm/b, for a parameter
b > 0. Solving this recurrence (in Section 4.2) will conclude the proof of Lemma 4.1.

The reason for the recursive analysis is to be able to control the error coming from an application
of the invariance principle, Theorem 2.12. That error (of the form τ1/(8d)) has an undesirable
dependence on the degree d in the exponent, which would be overwhelming if we try to apply
a random block restriction ρ ∼ Bm in a single step, as in the proof of Lemma 3.1 in Section 3.
However, by viewing ρ as a two-step process, where we first apply a random block restriction
ρ1 ∼ Bb, and then apply another random block restriction ρ2 ∼ Bm/b, we only need to ensure that
the error coming from the invariance principle is small relative to the value of 1/b (more precisely,
b−1/2). By choosing b so that b−1/2 is equal to τ1/(8d), we ensure that the error from the invariance
principle is not overwhelming when we reduce from the case of Bm to the case of Bm/b. Then we
repeat this recursive process enough times to get the final bound.

For simplicity, we only prove Lemma 4.1 for γ = 1. It is easy to modify the proof for any γ.

4.1 Setting up the recurrence

By Claim 3.3, we have

Prρ∼Bm [pρ is not δ-concentrated] ≤ Prρ∼Bm [qρ is not δ-concentrated]

+
1

m
· τ−1 ·

(
d · log τ−1 · log δ−1

)O(d)
+ 2δ,

where q is some τ -regular polynomial of degree at most d.
We now upper bound

Prρ∼Bm [qρ is not δ-concentrated].

Consider the following equivalent way of choosing a random block restriction ρ ∼ Bm. Let 0 < b ≤
m be an integer parameter.

1. Partition the m blocks of variables of p into b disjoint super-blocks, where each super-block
has m/b blocks.

2. Uniformly at random pick a super-block ` ∈ [b], and assign each variable that is outside the
chosen super-block ` a uniformly random value in {−1, 1}, independently.

3. Uniformly at random pick a block within super-block `, and assign each variable that is
outside the chosen block a uniformly random value in {−1, 1}, independently.

To avoid some technicalities due to divisibility that can be overcome easily by adding dummy
blocks, we assume here that m is divisible by b.

Note that step 2 above is an application of random block restriction on b blocks, and step 3 is
an application of random block restriction on m/b blocks. Then we have

Prρ∼Bm [qρ is not δ-concentrated] = Prρ1∼Bb,ρ2∼Bm/b [(qρ1)ρ2 is not δ-concentrated].

Let E(ρ1) denote the random event that qρ1 is (δ, 2)-concentrated. By conditioning on this event,
we get that the probability above equals

Prρ1,ρ2 [(qρ1)ρ2 is not δ-concentrated | E(ρ1)] ·Prρ1 [E(ρ1)]

+ Prρ1,ρ2 [(qρ1)ρ2 is not δ-concentrated | ¬E(ρ1)] ·Prρ1 [¬E(ρ1)]. (21)
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The first summand in Equation (21) contains the quantity

Prρ1,ρ2 [(qρ1)ρ2 is not δ-concentrated | qρ1 is (δ, 2)-concentrated]. (22)

To bound this quantity, we use the following which says a concentrated polynomial is likely to
remain concentrated under random block restrictions.

Lemma 4.2. For any m > 0, if a degree-d multilinear polynomial p is (δ, γ+ 1)-concentrated, then

Prρ∼Bm [pρ is not (δ, γ)-concentrated] ≤ δ.

Proof. Fix an arbitrary block ` ∈ [m]. Let S be the set of variables in block ` and S̄ be the set of
variables outside block ` (i.e., S is the set of unrestricted variables and S̄ is the set of restricted
variables). Then we can write

p(AS , AS̄) = q(AS , AS̄) + r(AS̄) + µ,

where r contains all the monomials in p that only depend on variables in S̄, and µ = Exp[p(A)].

Also, for ρ ∈ {−1, 1}|S̄|, let µ′(ρ) = r(ρ) + µ, and define Q(ρ) = ‖q(AS , ρ)‖22 = Var[pρ]. It can be
shown (see, e.g., [DSTW10, proof of Lemma 6]) that Q is a degree-2d polynomial with

‖Q‖2 ≤ 3d ·
∑
i∈S

Inf i[p].

Thus, we have

Inf [p] ≥ 1

3d
· ‖Q‖2 . (23)

Now let ν =
(
L · log δ−1

)d
, where L > 0 is the constant from Definition 2.15. Then we want to

show
Prρ

[
Var[pρ] ≥ ν−γ · ‖pρ‖22

]
≤ δ. (24)

Note that to show Equation (24), it suffices to show

Prρ
[
Q(ρ) ≥ ν−γ · |µ′(ρ)|2

]
≤ δ. (25)

We first prove the following claim.

Claim 4.3. We have

Prρ

[
|µ′(ρ)|2 < νγ+1

8 · d · 3d
· ‖Q‖2

]
≤ δ/2.

Proof. We have for all ρ,

|µ′(ρ)| = |µ+ r(ρ)|
≥ |µ| − |r(ρ)|

≥
√

(νγ+1 − 1) ·Var[p]− |r(ρ)|

≥
√
νγ+1

2
·Var[p]− |r(ρ)|, (26)
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where the third line above is by the assumption that p is (δ, γ + 1)-concentrated. Also, by Theo-
rem 2.3, we have

Prρ

[
|r(ρ)| ≥

√
νγ+1

8
· ‖r‖2

]
≤ Prρ

[
|r(ρ)| ≥

√
ν

8
· ‖r‖2

]
≤ exp

(
−(1/4) ·

(ν
8

)1/d
)

≤ δ/2. (27)

Combining Equation (26) and Equation (27), we get that, with probability at least 1− δ/2,

|µ′(ρ)| ≥
√
νγ+1

2
·Var[p]−

√
νγ+1

8
· ‖r‖2

=

√
νγ+1

8
·
(

2 ·
√

Var[p]− ‖r‖2
)

≥
√
νγ+1

8
·Var[p]

≥
√
νγ+1

8 · d
· Inf [p] (by Theorem 2.9)

≥
√

νγ+1

8 · d · 3d
· ‖Q‖2, (by Equation (23))

as desired.

Therefore, we have

Prρ
[
Q(ρ) ≥ ν−γ · |µ′(ρ)|2

]
≤ Prρ

[
Q(ρ) ≥ ν−γ · νγ+1

8 · d · 3d
· ‖Q‖2

]
+ δ/2 (Claim 4.3)

= Prρ

[
Q(ρ) ≥ ν

8 · d · 3d
· ‖Q‖2

]
+ δ/2

≤ δ, (Theorem 2.3)

which completes the proof of Equation (24) and hence the lemma.

Now by Lemma 4.2, the quantity in Equation (22) is at most δ. The second summand in
Equation (21) is the product of two probabilities, the first of which is the same as for the original
problem but with the restriction parameter m/b instead of m, and so can be analyzed inductively.
By our arguments above, we get the recurrence:

P(d,m, δ) ≤ P(d,m/b, δ) · Preg(d, b, δ, 2, τ) + 3δ +
1

m
· τ−1 ·

(
d · log τ−1 · log δ−1

)O(d)
. (28)

Therefore, to reduce from P(d,m, δ) to P(d,m/b, δ), it remains to bound

Preg(d, b, δ, 2, τ).

However, by Lemma 3.4, we know that

Preg(d, b, δ, 2, τ) ≤ O
(
d2
)
· (c · log δ−1)2d ·

(
b−1/2 + τ1/(8d)

)
. (29)
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4.2 Solving the recurrence

We are now ready to finish the proof of Lemma 4.1.

Proof of Lemma 4.1. Let b = dm1/(8d)e and τ = m−1/2. Note that b−1/2 ≤ m−1/(16d). Then by
Equation (28) and Equation (29) we get that

P(d,m, δ) ≤ m−1/2 ·
(
d · logm · log δ−1

)O(d)

+ 3δ +O
(
d2
)
·
(
c · log δ−1

)2d ·m−1/(16d) · P(d,m/b, δ). (30)

We now show the following:

P(d,m, δ) ≤ (m−1/2 + δ) · (d · logm · log δ−1)16Ed2 log logm, (31)

where E is a sufficiently large constant.
We proceed by induction on m. The base case is m ≤ 2d. In this case, the right hand side

of Equation (31) is greater than 1 when E is sufficiently large and Equation (31) holds trivially.
Now suppose Equation (31) holds for all smaller values of m. Let M = d · logm · log δ−1. By
Equation (30), we obtain the recurrence

P(d,m, δ) ≤ (m−1/2 + δ) ·ME·d +m−1/(16d) · P(d,m/b, δ) ·ME·d, (32)

for a sufficiently large constant E. Then by the induction hypothesis, we get

m−1/(16d) · P(d,m/b, δ) ·ME·d

≤ m−1/(16d) · (2 ·m−1/2+1/(16d) + δ) · (d · log(m/b) · log δ−1)16Ed2 log log(m/b) ·ME·d

≤ 2 · (m−1/2 + δ) ·M16Ed2 log log(m/b) ·ME·d, (33)

where the first inequality above uses the fact that (m/b)−1/2 ≤ 2 · m−1/2+1/(16d) for m > 2d.
Combining Equation (32) and Equation (33), we have

P(d,m, δ) ≤ (m−1/2 + δ) · 3 ·M16Ed2 log log(m/b)+E·d.

Note that

log log(m/b) ≤ log log(m1−1/(8d))

= log(1− 1/(8d)) + log logm

≤ −1/(8d) + log logm.

Therefore, when E is sufficiently large, we have

3 ·M16Ed2 log log(m/b)+E·d ≤ 3 ·M16Ed2 log log(m)−E·d ≤M16Ed2 log log(m),

as required.
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5 Block Restriction Lemma with Optimal Exponent: Strong ver-
sion

In this section, we prove a stronger version of Lemma 4.1. Note that for d = 1, the notation
O(d · log d) below should be interpreted as O(1) (rather than 0).

Lemma 5.1 (Block Restriction Lemma: Strong Version). For any degree-d multilinear polynomial
p, any m ≥ 16, γ ≥ 1, and 0 < δ ≤ 1/16, we have

Prρ∼Bm [pρ is not (δ, γ)-concentrated] ≤ (m−1/2 + δ) · (logm)O(γ·d·log d) · (log δ−1)O(γ·d2).

We follow a strategy similar to that in the proof of Lemma 4.1, except we do not bound
the number of blocks where the polynomial p restricted to that block has its α function (see

Definition 3.6) greater than some fixed threshold
(
c · log δ−1

)−d
. Using such a rigid threshold

for declaring a polynomial not δ-concentrated results in significant losses at each iteration of the
recursion. To get an improved analysis, we instead keep track of an upper bound on the expected
value of the function α(p), throughout the recursion. Such an upper bound provides a soft measure
of the likelihood that the current function is still not δ-concentrated (cf. Corollary 3.7).

Thus, our proof of Lemma 5.1 will be as follows. We first argue (in Section 5.1) that it suffices
to consider regular polynomials. Then we set up a recurrence (in Section 5.2), reducing the case of
restrictions from Bm to that of restrictions from Bm/b, for a parameter b > 0. Finally, we solve the
recurrence (in Section 5.3) to conclude the proof of Lemma 5.1.

As in the previous section, we only show for γ = 1 and note that the proof works for any γ.

5.1 Regularization

We shall modify our earlier definition of P and Preg, using the function α from Definition 3.6.

Definition 5.2. Let P(d,m, δ, a) be the supremum, over all degree-d polynomials p with α(p) ≤ a
and all possible partitions of the variables into m blocks, of the probabilities

Prρ∼Bm [pρ is not δ-concentrated] .

Let Preg(d,m, δ, a, τ) be the same as P but only for τ -regular polynomials.

We show that the analysis of P can be reduced to that of Preg.

Lemma 5.3. For any real 0 < τ, δ < 1/4 and a > 0, integer m > 4 and d, b ≥ 1, we have

P(d,m, δ, a) ≤ 1

m
· τ−1 · (d · log τ−1 · log δ−1)O(d) + 2δ + Expℵ[Preg(d,m, δ,ℵ, τ)],

where ℵ is a non-negative random variable with Exp[ℵ] ≤ O (a).

Proof. Let p be a degree-d multilinear polynomial with its variables petitioned into m blocks and
α(p) ≤ a. Consider the decision tree given by Theorem 2.11 with ε = δ and γ = 2. Note that the
depth of this decision tree is

H = τ−1 · (d · log τ−1 · log δ−1)O(d).
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We view ρ as ρ = (`, λ), where ` is the selected block and λ is an uniform retrictoin to the
variables outside block `. For each leaf ω, let Rω be the set of random restrictions consistent with
the branch leading to ω. As observed above, the probability ξ of choosing a restriction from the
complement of ∪ωRω is at most H/m. We get

Prρ∼Bm [pρ is not δ-concentrated] ≤ (1− ξ) ·Prρ∈∪ωRω [pρ is not δ-concentrated] + ξ. (34)

By conditioning on ρ ∈ Rω, we get that Prρ∈∪ωRω [pρ is not δ-concentrated] equals to∑
ω

Prρ[pρ is not δ-concentrated | ρ ∈ Rω] ·Pr[ρ ∈ Rω | ρ ∈ ∪ωRω].

Note that the probability of choosing ρ ∈ Rω conditioned on ρ ∈ ∪ωRω is 2−`ω · (1 − ξ)−1, where
`ω is the length of the branch leading to ω. Hence, the right-hand side of Equation (34) is at most

Expω[Prρ∈Rω [pρ is not δ-concentrated]] + ξ.

Each restriction ρ = (`, λ) ∈ Rω can be viewed as a restriction of the variables on the branch
leading to ω (as specified by the branch) plus an uniform restriction λ′ to the remaining variables
outside block `. So we can express pρ as (pω)ρ′ , where ρ′ = (`, λ′).

Note that ρ′ is a random block restriction on m blocks, which comes from the set of those
restrictions that chose block ` outside at most H blocks containing the variables on the branch
leading to ω. The set of all such restrictions ρ′ has the probability mass at least 1 −H/m within
the set of all random block restrictions ρω (which pick block ` uniformly at random from the set of
all m blocks). Therefore, we can upperbound the expression in Equation (34) by

Expω[Prρ′ [(pω)ρ′ is not δ-concentrated]] + ξ

≤ (1−H/m)−1 ·Expω[Prρω [(pω)ρω is not δ-concentrated]] + ξ

≤ Expω[Prρω [(pω)ρω is not δ-concentrated]] + ξ + 2(H/m),

where the last inequality uses the fact that (1− x)−1 ≤ 1 + 2x whenever 0 < x ≤ 1/2.
Thus, we have

Prρ∼Bm [pρ is not δ-concentrated] ≤ Expω [Prρω∼Bm [(pω)ρω is not δ-concentrated]] +
3H

m
. (35)

Note that a leaf ω can be in one of the three cases.

1. The polynomial restricted by ω is neither τ -regular nor (δ, 2)-concentrated.

2. The polynomial restricted by ω is (δ, 2)-concentrated.

3. The polynomial restricted by ω is not (δ, 2)-concentrated but τ -regular.

Then the contribution from the ω’s in case i ∈ [3] to the expected value in Equation (35) is∑
ω in case i

Prρω∼Bm [(pω)ρω is not δ-concentrated] ·Pr[ω].

By Theorem 2.11, the contribution form those ω’s in the first case at most ε = δ. If ω is in the
second case, then by Lemma 4.2, the probability over ρω that (pω)ρω is not δ-concentrated is at

26



most δ, so those ω’s contribute at most δ. Finally, the contribution from those ω’s in the third case
is at most

Expω [Preg(d,m, δ, α(pω), τ)] .

Therefore, we have

P(d,m, δ, a) ≤ 1

m
· τ−1 · (d · log τ−1 · log δ−1)O(d) + 2δ + Expω[Preg(d,m, δ, α(pω), τ)].

To complete the proof, we need to show that

Expω[α(pω)] ≤ O (a) .

We have

Expω[α(pω)] = Expω

[
ExpA,B

[
min

{
1,
|DB pω(A)|2

|pω(A)|2

}]]
≤ Expω

[
ExpA

[
min

{
1,
‖∇pω(A)‖2

|pω(A)|2

}]]
(by Lemma 2.8)

≤ Exp

[
min

{
1,
‖∇p(A)‖2

|p(A)|2

}]

≤ 72 ·Exp

[
min

{
1,
|DB p(A)|2

|p(A)|2

}]
(by Lemma 2.8)

≤ 72 · a,

as required.

5.2 Setting up the recurrence

We show the following recurrence relation for regular polynomials.

Lemma 5.4. For any real 0 < τ, δ < 1/4 and a > 0, integer m > 4 and d, b ≥ 1, we have

Preg(d,m, δ, a, τ) ≤ Expℵ[P(d,m/b, δ,ℵ)],

where ℵ is a non-negative random variable with Exp[ℵ] = O
(
d3ab−1/2 + d4τ1/(8d)

)
.

We shall need the following analogue of the function α(p) for the Gaussian case.

Definition 5.5. For p a non-zero polynomial, we define

β(p) : = Exp

[
min

{
1,
|DY p(X)|2

|p(X)|2

}]
.

The functions α(p) and β(p) are related in the following way.

Lemma 5.6. Let p be a degree-d, τ -regular, non-zero polynomial. Then

β(p) = α(p) +O
(
d · τ1/(8d)

)
.
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Proof. We have

β(p) = Exp

[
min

{
1,
|DY p(X)|2

|p(X)|2

}]
=

∫ 1

0
Pr
[
|p(X)| ≤ t−1/2 · |DY p(X)|

]
dt

=

∫ 1

0
Pr
[
|p(A)| ≤ t−1/2 · |DB p(A)|

]
dt+O

(
d · τ1/(8d)

)
(by Theorem 2.12)

= α(p) +O
(
d · τ1/(8d)

)
,

as required.

In Lemma 5.4, we want to keep track of α(p) in the recurrence, and so we need a version of the
anticoncentration bound that takes α(p) into account. This is achieved by the following version of
Theorem 2.7 that takes β(p) into account.

Theorem 5.7 ([Kan14]). For any d-degree polynomial p and any 0 < ε < 1, we have

Pr [|p(X)| ≤ ε · |DY p(X)|] = O
(
d3β(p)ε

)
.

We get the following.

Corollary 5.8. For any d-degree τ -regular non-constant multilinear polynomial p, and any ε > 0,
we have

Pr[|p(A)| ≤ ε · |DB p(A)|] = O
(
d3 · ε · β(p) + d · τ1/(8d)

)
.

Proof. The proof is the same as that of Corollary 2.13, with Theorem 5.7 replacing Theorem 2.7.

We are now ready to prove Lemma 5.4.

Proof of Lemma 5.4. Let p be a τ -regular, degree-d, multilinear polynomial with Var[p(x)] = 1
and α(p) ≤ a. Consider the way of choosing a random block restriction as described in Section 4.1.
Recall that ρ1 is a random block restriction on b blocks and ρ2 is a random block restriction on
m/b blocks. Then for any arbitrary partition of the variables into m blocks, we have

Prρ∼Bm [pρ is not δ-concentrated] = Prρ1∼Bb,ρ2∼Bm/b [(pρ1)ρ2 is not δ-concentrated]

= Expρ1
[Prρ2 [(pρ1)ρ2 is not δ-concentrated]]

≤ Expρ1
[P(d,m/b, δ, α(pρ1))] .

Therefore, it suffices to show that

Expρ1∼Bb [α(pρ1)] = O
(
d3ab−1/2 + d4τ1/(8d)

)
. (36)

Note that

Expρ1∼Bb [α(pρ1)] =
1

b
·
∑
`

ExpA¯̀
[α(pA¯̀)],
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where A¯̀ is a random assignment to the variables that are not in block `. From the calculation in
Lemma 3.4 (Equation (20)), we have∑

`

ExpA¯̀
[α(pA¯̀)] = Exp

[
min

{
1,
|DB p(A)|2

|p(A)|2

}]
+

∫ b

1
Pr
[
|p(A)| ≤ t−1/2 · |DB p(A)|

]
dt

= α(p) +

∫ b

1
O
(
d3tβ(p)t−1/2 + dτ1/(8d)

)
dt (by Corollary 5.8)

= α(p) +O
(
d3β(p)

√
b+ bdτ1/(8d)

)
= O

(
d3α(p)

√
b+ bd4τ1/(8d)

)
(by Lemma 5.6)

= O
(
d3a
√
b+ bd4τ1/(8d)

)
,

as required.

5.3 Solving the recurrence

Since α(p) ≤ 1 by definition, we have P(d,m, δ) = P(d,m, δ, 1). Thus, to prove Lemma 5.1, it
suffices to prove the following stronger result, and apply it with a = 1.

Theorem 5.9. There is a constant B > 0 such that, for any d > 0, m ≥ 16, 0 < δ ≤ 1/16 and
0 < a ≤ 1, we have

P(d,m, δ, a) ≤ (a ·m−1/2 + δ) · (logm)B·d·log d · (log δ−1)B·d
2
. (37)

Proof. First we argue that, for a sufficiently large constant B > 0, we may assume that a and m
are relatively large.

Claim 5.10. For a sufficiently large constant B > 0, we may assume that both

a ≥ (c · log δ−1)−2d, (38)

and
m1/(32·d) ≥ (c · log δ−1)2d, (39)

where c > 0 is the constant from Corollary 3.7.

Proof of Claim 5.10. If Equation (38) is false, then, by Corollary 3.7, the given polynomial is
(δ, 2)-concentrated, and by Lemma 4.2, the probability that its random block restriction is not
δ-concentrated is at most δ, and so Equation (37) is satisfied. Next, assume Equation (38), and
suppose that Equation (39) is false. Then we get that a ·m−1/2 > (log δ−1)−T ·d

2
, for some constant

T > 0, implying that a ·m−1/2 · (log δ−1)B·d
2
> 1, for B ≥ T + 1. Hence, the right-hand side of

Equation (37) is greater than 1 in this case, and so Equation (37) holds.

By Claim 5.10, we can assume for the rest of the proof that Equations (38) and (39) both hold.

Claim 5.11. There is a constant E > 0 such that, for any m ≥ 16 and 0 < δ ≤ 1/16, we have

P(d,m, δ, a) ≤ 1

2
·(a·m−1/2+δ)·(logm)E·d·log d ·(log δ−1)E·d

2
+Expℵ[P(d,m/dm1/(16d)e, δ,ℵ)], (40)

where ℵ is a non-negative random variable with Exp[ℵ] = O
(
d4 · a ·m−1/(32d)

)
.
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Proof. Let τ = m−1/2 and b = dm1/(16d)e. By Lemma 5.3, we get that

P(d,m, δ, a) ≤ m−1/2 · (d · logm · log δ−1)O(d) + 2δ + Expℵ1
[Preg(d,m, δ,ℵ1,m

−1/3)], (41)

for some non-negative random variable ℵ1 with Exp[ℵ1] ≤ O (a). By Equation (38), we get

m−1/2 · (d · logm · log δ−1)O(d) + 2δ ≤ 1

2
· (a ·m−1/2 + δ) · (logm)E·d·log d · (log δ−1)E·d

2
, (42)

for a sufficiently large constant E > 0. Next, by Lemma 5.4, we get

Expℵ1
[Preg(d,m, δ,ℵ1,m

−1/2)] ≤ Expℵ1

[
Expℵ2

[P(d,m/b, δ,ℵ2)]
]

≤ Expℵ[P(d,m/b, δ,ℵ)], (43)

for some non-negative random variable ℵ with

Exp[ℵ] = O
(
d3 · a · b−1/2 + d4 · τ1/(8d)

)
≤ O

(
d3 · a ·m−1/(32d) + d4 ·m−1/(16d)

)
≤ O

(
d4 · a ·m−1/(32d)

)
. (by Equations (38) and (39))

Equations (42) and (43) imply Equation (40).

We now prove Theorem 5.9 by induction on m. We start with the base case m ≤ 2d. By
Equation (38), we only need to consider a ≥ (c · log δ−1)−2d. Note that in this case, the bound
in Theorem 5.9 is greater 1 when B is sufficiently large. Now suppose Theorem 5.9 holds for all
smaller values of m. Let M = (logm)Bd log(d) · (log δ−1)Bd

2
for B > E to be determined, where E

is the constant in Claim 5.11. By Claim 5.11, we have

P(d,m, δ, a) ≤ 1

2
· (a ·m−1/2 + δ) ·M + Expℵ[P(d,m/dm1/(16d)e, δ,ℵ)],

where ℵ is a non-negative random variable with Exp[ℵ] = C · d4 · a · m−1/(32d) and C is some
constant. Then by the induction hypothesis, we have

Expℵ[P(d,m/dm1/(16d)e, δ,ℵ)]

≤ Expℵ

[
(ℵ · 2 ·m−1/2+1/(32d) + δ) · (logm1−1/(16d))Bd log(d) · (log δ−1)Bd

2
]

≤ 2 · (Expℵ[ℵ] ·m−1/2+1/(32d) + δ) · (1− 1/(16d))Bd log(d) ·M
≤ 2 · (C · d4 · a ·m−1/(32d) ·m−1/2+1/(32d) + δ) · (1− 1/(16d))Bd log(d) ·M
= 2 · C · d4 · (1− 1/(16d))Bd log(d) · (a ·m−1/2 + δ) ·M
≤ 2 · C · d4 · e−B log(d)/16 · (a ·m−1/2 + δ) ·M

≤ 1

2
· (a ·m−1/2 + δ) ·M,

where the last inequality holds if B is sufficiently large.
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Note that the only reason why we have the factor (log δ−1)O(d2) rather than (log δ−1)O(d) in
Equation (37) is to justify the assumption in Equation (39). If we assume this condition explicitly,
then we get the following slightly stronger version of the PTF restriction lemma for δ not too small.

Lemma 5.12. For any degree-d multilinear p, any m ≥ 16, and any 0 < δ < 1/16 such that
m1/(64·d) ≥ (c · log δ−1)d for the constant c > 0 from Corollary 3.7, we have

Prρ∼Bm [pρ is not δ-concentrated] ≤ (m−1/2 + δ) · (logm)O(d log d) · (log δ−1)O(d).

6 Applications

6.1 Lower bounds for depth-2 circuits with PTF gates

Here we generalize the gate and wire complexity lower bound of [KW16] for Andreev’s function
against depth-2 circuits with LTF gates, to depth-2 circuits with degree-d PTF gates, for any d ≥ 1.
Our lower bounds match those of [KW16] for the case of d = 1 (up to polylogarithmic factors), and
extend to any degree d�

√
(log n)/(log log n).

The main technical tool used by [KW16] was a restriction lemma saying, roughly, that an n-
variate LTF function hit by some “structured” random restriction that leaves (logn) variables, will
become a constant function except with probability (log n)/

√
n. This restriction lemma is then

combined with a careful counting argument to show that Andreev’s function requires depth-2 LTF
circuits with at least Ω(n1.5/(log3 n)) gates, and Ω(n2.5/(log7/2 n)) wires.

The restriction lemma of [KW16] is proved using the Littlewood-Offord lemma from additive
combinatorics [LO43]. It is not clear how to prove a similar restriction lemma for higher degree
d > 1 using the same tools. However, we show that our Block Restriction Lemma yields such a
generalization for any 1 ≤ d�

√
(log n)/(log log n). The reason is that we can make the parameter

δ in Lemma 4.1 very small compared to the number of unrestricted variables so that, for the
restricted function being δ-close to constant is the same as being constant. We start by proving
the following restriction lemma for PTFs.

Lemma 6.1. Let f be any n-variate degree-d PTF. Let P be a partition of [n] into parts of equal-
sized with |P| ≤ n/16 , and let RP be the distribution on restrictions ρ : [n] → {−1, 1, ∗} that
randomly selects one variables from each part of P and restricts all other variables uniformly at
random. Then

Prρ∼RP
[fρ is not a constant] ≤ 1√

n
· (|P| · log n)O(d2) . (44)

Moreover, if f depends on at most w of its inputs, then

Prρ∼RP
[fρ is not a univariate function] ≤ 1

n3/2
· w · (|P| · log n)O(d2) . (45)

Proof. Consider the following equivalent way of choosing a random restriction ρ ∼ RP .

1. Create m = n
|P| blocks. For each part in P, randomly assign the n

|P| variables in the part to
the m blocks so that each block takes exactly one of the variables from the part.

2. Apply a random block restriction ρ′ ∼ Bm based on the partition in the previous step.
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By Lemma 5.1 and Lemma 2.16, for any partition into blocks generated in the first step above,
the probability over the restrictions in the second step that the restricted PTF is not δ-close to
constant is at most (√

|P|
n

+ δ

)
·
(

log
n

|P|
· log δ−1

)O(d2)
. (46)

Now let δ = min

{
2−(|P|+1),

√
|P|
n

}
. In this case, the restricted function, which is on |P| vari-

ables and δ-close to constant, is indeed a constant. Note that for such δ, Equation (46) implies
Equation (44).

Next, for each wire i ∈ [w], define the following random event Ei: the function fρ depends
on wire i and on some other wire. Note that if Ei happens, then wire i is assigned ∗ by ρ which
happens with probability |P|/n, and that both (fρ)wi=−1 and (fρ)wi=1 are non-constant functions.
It is not hard to see that given wire i is assigned ∗, the probability that (fρ)wi=−1 (or (fρ)wi=1) is
non-constant is

Expρ1
[Prρ2 [((fρ1)w=−1)ρ2 is not a constant], (47)

where ρ1 is a random partial assignment to the wires (except wire i) in the part that contains wire
i, and ρ2 is the restriction that randomly selects one variables from each of the rest |P| − 1 parts
and restricts all other variables uniformly at random. Then the inner probability in Equation (47)
can be upperbounded by Equation (44). Thus, we get

Prρ∼RP
[fρ is not a univariate function]

= Pr [∨wi=1Ei]

≤
w∑
i=1

Pr[Ei]

≤ w · |P|
n
· 2 · 1√

n
· ((|P| − 1) · log n)O(d2) ,

implying Equation (45).

To simplify the presentation, we only argue the worst-case lower bound; a correlation bound as
in [KW16] can also be proved in a similar way. We prove a lower bound for the Andreev’s function.

Definition 6.2. Define Andreev’s function An : {−1, 1}5n → {−1, 1} as follows:

An(x1, . . . , x4n, y1, . . . , yn) = xi,

where i ∈ [4n] is a positive integer uniquely given by the binary string z ∈ {−1, 1}log 4n obtained as
follows: partition [n] into log 4n parts so that each part has t = n

log 4n variables, and the j-th part

Pj is the set
{
y(j−1)·t+k : k = 1, . . . , t

}
. Then zj =

∏
yk∈Pj yk.

For simplicity, we assume here that n is divisible by log 4n. We show the following gate and
wire lower bounds for An against depth-2 circuits with d-degree PTF gates; for d = 1, these bounds
match those of [KW16], up to polylogarithmic factors.

Theorem 6.3 (Lower bounds for depth-2 degree-d PTF circuits). Every depth-2 circuit on n inputs

and degree-d PTF gates, that computes An must have at least
(
n

1
2

+ 1
d

)
· (log n)−O(d2) gates, and at

least
(
n

3
2

+ 1
d

)
· (log n)−O(d2) wires.
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For the proof of Theorem 6.3, we shall need the following straightforward generalization to
degree-d PTFs of the result in [RSO94] about the number of LTFs on s inputs, where each input is
some boolean function of n variables; the latter result is in turn a generalization of [Win61, Cho61].

Theorem 6.4 ([RSO94]). For any degree-d PTF g on s variables, and any collection of boolean
functions f1, . . . , fs : {−1, 1}n → {−1, 1}, the n-variate boolean function

h(~x) = g(f1(~x), . . . , fs(~x))

where ~x = (x1, . . . , xn) ∈ {−1, 1}n, can be completely specified using O(sd · n) bits.

As an immediate consequence of Theorem 6.4, we get the following.

Corollary 6.5. Every depth-2 circuit on n inputs with s degree-d PTF gates can be completely
specified using at most O

(
sd · n+ s · nd+1

)
bits.

Now we are ready to complete the proof of Theorem 6.3.

Proof of Theorem 6.3. For an arbitrary ~a = (a1, . . . , a4n) ∈ {−1, 1}4n, let

F (y1, . . . , yn) = An(a1, . . . , a4n, y1, . . . , yn).

Towards contradiction, suppose that An, and hence also F , is computable by a depth-2 circuit
with degree-d PTF gates of wire or gate complexity less than the bounds claimed in the theorem
statement (for sufficiently large constants in the O(d2) exponents of the polylog factors). Let P
be the partition of [n] into log 4n parts of equal size as specified in Definition 6.2. We then apply
a random restriction ρ ∼ RP to the function F (y1, . . . , yn). Then Fρ can be used to reconstruct,
in the information-theoretic sense (say, in the sense of Kolmogorov complexity) the string ~a (by
the definition of An). More precisely, to reconstruct ~a, it suffices to know the restriction ρ plus the
description of some circuit computing Fρ. The restriction ρ can be described using at most 2n bits
(by specifying for each i ∈ [n] whether it is 1, −1, or unrestricted). Next we bound the size of a
circuit computing Fρ, for some ρ satisfying the above condition.

By Lemma 6.1, the expected number of bottom PTF gates of the depth-2 circuit computing

Fρ(y1, . . . , yn) is at most s0 = n1/d/(log n)O(d2) (if either the number of gates or the number of
wires of F is small). By the Markov inequality, the probability over ρ ∼ RP that the actual number
s of gates of the circuit for Fρ is more than 2 · s0 is at most 1/2.

It follows that with probability at least 1/2, we get a random restriction ρ ∼ RP such that Fρ
has at most 2 · s0 gates. By Corollary 6.5, the circuit for Fρ is described with at most n bits.

We conclude that every ~a ∈ {−1, 1}4n can be described with at most 2n+n = 3n bits. However,
by a simple counting argument, we know that almost all 4n-bit strings ~a require the description
size strictly greater than 3n. A contradiction.

6.2 Lower bounds for depth-3 circuits with PTF gates

Here we generalize the lower bound of [KW16] against circuits that are majority votes of depth-2
LTF circuits, to majority votes of depth-2 circuits with degree-d PTF gates. In [KW16], it was
shown that there exists a polynomial time function that requires circuits of the form mentioned

above with Ω
(
n2.5/(log7/2 n)

)
wires. Here, we show a lower bound against circuits that can have

sub-exponential size as long as the total fanin of the bottom layer gates is small.
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We first define a generalized Andreev function. Recall that a (ζ, L)-list-decodable code is a
function K : {−1, 1}k → {−1, 1}n that maps k-bits messages to n-bits codewords such that for any
codeword y ∈ {−1, 1}n, there are at most L codewords in the range of K that have relative hamming
distance within ζ from y. We will use the following list-decodable code (see, e.g., [CKK+15] for its
construction).

Theorem 6.6. For any given 0 < ε < 1, there exists a binary code K mapping 4n-bit message
to a codeword of length 2n

ε
, such that K is (ζ, L)-list-decodable for ζ = 1/2 − O

(
2−n

ε/4
)

and

L ≤ O
(
2n

ε/2
)
. Furthermore, there is a polynomial-time algorithm for computing K(x) in position

z, for any inputs x ∈ {−1, 1}4n and z ∈ {−1, 1}nε.

Definition 6.7. Let 0 < ε < 0. Define the function Bn,ε : {−1, 1}5n → {−1, 1} as follows:

Bn,ε(x1, . . . , x4n, y1, . . . , yn) = K(x)i,

where K is the code from Theorem 6.6, and i ∈ [2n
ε
] is a positive integer uniquely given by the

binary string z ∈ {−1, 1}nε obtained as follows: partition [n] into nε/d
2

parts so that each part has
t = n

nε variables, and the j-th part Pj is the set
{
y(j−1)·t+k : k = 1, . . . , t

}
. Then zj =

∏
yk∈Pj yk.

Note that the function above is polynomial-time computable since we can compute K(x) in
position i in polynomial time.

We are now ready to prove the lower bound.

Theorem 6.8. For any 1
logn � ε < 1, let C be a majority vote of depth-2 circuits with degree-d

PTF gates such that the top majority gate has fanin at most 2n
ε

and the total fanin of the gates

on the bottom layer at most w =
(
n

3
2

+ 1
d

)
· (nε · log n)−c·d

2

, where c is a constant. Then C cannot

compute Bn,ε.

Proof. Let a ∈ {−1, 1}4n be a string with Kolmogorov complexity at least 4n, and let

F (y1, . . . , yn) = Bn,ε(a1, . . . , a4n, y1, . . . , yn).

Let D be an arbitrary depth-2 circuit in nε variables with degree-d PTF gates, of size at most

s0 = n1/d−O(ε·d2). Note that by Corollary 6.5, D can be described with at most n bits. Let P be
the partition of [n] into nε parts of equal size as specified in Definition 6.7. We claim that for any
ρ ∼ RP ,

Corr(Fρ, D) < 2−n
ε
.

Toward a contradiction, suppose D agrees with Fρ on at least 1/2 + 2−n
ε

of the inputs for some
ρ. Then we can recover a as follows. We first use the circuit D and the string ρ to compute the
corrupted codeword K ′ such that K ′ and K(a) have relative hamming distance at most 1/2−2−n

ε
.

We then list-decode K ′ to obtain a list of L ≤ O
(
2n

ε/2
)

codewords, which must contain K(a).
Finally, we use an index string of length at most log(L) to get K(a) from the list of codewords
and recover a. This shows that we can use fewer than 4n bits to describe a, which contradicts the
assumption that a has Kolmogorov complexity at least 4n.

Next, let Ca be the circuit obtained from C by setting the first 4n variables to be a, and let
ρ0 ∼ RP be a restriction such that (Ca)ρ0 has at most s0 gates on the bottom layer. The existence
of such a restriction is guaranteed by Equation (45), when the total fanin of the bottom layer gates
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is at most w and c is sufficiently large. By the nature of majority function and a simple averaging
argument, we know that (Ca)ρ0 must have correlation at least 2−n

ε
with one of its sub-circuits,

which is a depth-2 circuit in nε variables with degree-d PTF gates, of size at most s0. Thus, we
conclude that Ca cannot compute F .

6.3 Lower bounds for constant-depth circuits with PTF gates

Here we extend the wire complexity correlation bounds of [CSS16] for parity and the generalized
Andreev’s function against constant-depth circuits with LTF gates to constant-depth circuits with
degree-d PTF gates, for any d ≥ 1. We do this by generalizing the structural lemma for LTFs used
in [CSS16] to degree-d PTFs.

Lemma 6.9. For any PTF f(x) = sgn(p(x)) of degree d ≥ 1, and any 0 < δ, r ≤ 1/16, we have

Prρ∼Rr [fρ is not δ-close to constant] ≤ (
√
r + δ) · (log r−1 · log δ−1)O(d2).

Proof. Let r0 be so that r−1
0 = br−1c. Then we have

Prρ∼Rr [fρ is not δ-close to constant] = Prρ1∼Rr0 ,ρ2∼Rr/r0 [(fρ1)ρ2 is not δ-close to constant] .
(48)

Let E(ρ1) denote the random event that fρ1 is δ2-close to constant. Then Equation (48) can be
expressed as

Prρ1,ρ2 [(fρ1)ρ2 is not δ-close to constant | ¬E(ρ1)] ·Prρ1 [¬E(ρ1)]

+ Prρ1,ρ2 [(fρ1)ρ2 is not δ-close to constant | E(ρ1)] ·Prρ1 [E(ρ1)] (49)

By the fact that a function δ2-close to constant is expected to remain δ2-close to constant under
random restrictions and by Markov’s inequality, the second summand in Equation (49) is at most
δ. We then upperbound the first summand in Equation (49) by showing the following

Prρ1 [¬E(ρ1)] ≤ (
√
r + δ) · (log r−1 · log δ−1)O(d2).

Since r0 ≤ 2r, it suffices to show

Prρ1∼Rr0
[
fρ1 is not δ2-close to constant

]
≤ (
√
r0 + δ) · (log r−1

0 · log δ−1)O(d2). (50)

Equation (50) follows immediately from Lemma 5.1 and Lemma 2.16 by noting the following equiv-
alent way of choosing a random restriction ρ1 ∼ Rr0 .

1. Randomly partition the variables of f into m = 1/r0 disjoint blocks, where each variable is
assigned to block i ∈ [m], independently, with probability 1/m.

2. Apply a random block restriction ρ′ ∼ Bm based on the partition in the previous step.

We now state our correlation bounds against constant-depth circuits with PTF gates. Let Parn
denote the parity function on n variables, and let A′n ∈ P denote the variant of Andreev’s function
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on 5n variables as defined in [CKK+15].3 For boolean functions f, g : {−1, 1}n → {−1, 1}, recall
that the correlation between f and g is

Corr(f, g) =
∣∣∣Expx∼{−1,1}n [f(x) · g(x)]

∣∣∣ .
We get the following correlation bounds.

Theorem 6.10. For any D ≥ 1 and 1 ≤ d�
√

log n/ log log n, let C be any depth-D circuit on n
inputs with degree-d PTF gates, of wire complexity at most n1+εD , where εD = B−(2D−1), for some
constant B > 0. Then we have

Corr(C,Parn) ≤ O
(
n−εD

)
.

Theorem 6.11. For any D ≥ 1 and 1 ≤ d � (log n/ log logn)1/(2D−1), let C be any depth-D
circuit on 5n inputs with degree-d PTF gates, of wire complexity at most n1+µD,d, where µD,d =
(E · d)−(2D−1), for some constant E > 0. Then we have

Corr(C,A′n) ≤ exp(−nµD,d/2).

Remark 6.12. In Theorem 6.10, the exponent εD in the correlation bound does not depend on the
degree d of the PTF gates in the circuit C, and stays polynomially small even for super-constant
degree d �

√
log n/ log log n. In Theorem 6.11, the correlation bound is exponentially small for a

constant degree d, and is super-polynomially small for d� (log n/ log log n)1/(2D−1).

The proofs of Theorem 6.10 and Theorem 6.11 are analogous to those in [CSS16] for the case of
LTF circuits, with just a couple of changes. The proofs are by induction on the depth D. For the
proof of correlation bounds with parity in [CSS16], the base case is the noise sensitivity bound for
LTFs due to Peres [Per04]; for the proof of Theorem 6.10, we can use the noise sensitivity bound
for degree-d PTFs due to Kane [Kan14]. For the correlation bounds with Andreev’s function, the
base case in [CSS16] needs an upper bound on the number of distinct LTFs on n variables; we
can use the bound for PTFs given by Theorem 6.4. Finally, for the inductive step, [CSS16] use
their LTF restriction lemma to show that, under a particular type of random restriction, with high
probability, a depth-D circuit with LTF gates will become close to some circuit of depth D − 1.
We can use our PTF Restriction Lemma, Lemma 6.9, with an appropriately small value of δ (for

example, exp
(
−(r−1/(c·d2))

)
, for a sufficiently large constant c).

6.4 Influence bound for PTFs

Here we show that Kane’s bound on the total influence (average sensitivity) of degree-d PTFs is a
corollary of our Block Restriction Lemma.

Theorem 6.13 ([Kan14]). For any d-degree PTF f on n > 1 variables, we have

Inf [f ] ≤
√
n · (log n)O(d log d) · 2O(d2 log d).

3We have A′n(x1, . . . , x4n, y1, . . . , yn) = Enc(x1, . . . , x4n)Ext(y1,...,yn), where Enc(·) denotes the encoding with a
certain error-correcting code, and Ext(·) is a certain extractor; see [CKK+15] or [CSS16] for more details.
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Proof. We first partition the variables into n blocks so that each block contains exactly one variable.
We then apply a variant of our Block Restriction Lemma, Lemma 5.12, with δ = 1/n2. For

d ≤
√

(log n)/(c′ · log log n), (51)

for some constant c′ > 0, the assumption of Lemma 5.12 on the largeness of δ is satisfied. Note
that since the restricted function is on one variable, being (1/n2)-close to constant is the same as
being constant. Therefore, by Lemma 5.12 and Lemma 2.16, we get

Prρ∼Bn [fρ is not a constant] ≤ n−1/2 · (log n)O(d log d). (52)

Also, by the definition of random block restriction, we have

Prρ∼Bn [fρ is not a constant] =
1

n
·
n∑
i=1

PrAī
[
fAī is not a constant

]
, (53)

where Aī is a random assignment to the variables except the i-th variable. Note that for every
fixed i,

PrAī
[
fAī is not a constant

]
= Prx∼{−1,1}n [f(x) 6= f(x⊕i)] = Inf i[f ]. (54)

Combining Equation (53) and Equation (54), we have

n∑
i=1

Inf i[f ] = n ·Prρ∼Bn [fρ is not a constant] .

Together with Equation (52), we get

Inf [f ] ≤
√
n · (log n)O(d log d). (55)

Note that Equation (55) holds for small degrees d satisfying Equation (51). If we multiply the

right-hand side of Equation (55) by 2O(d2 log d), we ensure that the bound on influence holds also
for all large d (as then the right-hand side of Equation (55) becomes at least n, which is a trivial
upper bound on Inf [f ]).

6.5 Littlewood-Offord type anticoncentration bounds for polynomials

Here we use our Block Restriction Lemma to drive the following anticoncentration bounds for
degree-d multilinear polynomials.

Theorem 6.14 ([MNV16]). For any real interval I, and any degree-d multilinear polynomial p such
that there exists a set of t disjoint monomials in p, each of which is maximal (i.e., not contained
by any other monomials) and has coefficient at least |I| in magnitude, we have

Pr[p(A) ∈ I] ≤ t−1/2 · (log t)O(d log d) · 2O(d2 log d).

Proof. Our proof is very similar to that of [MNV16], except they used Kane’s bound of Theo-
rem 6.13, whereas we use a variant of our Block Restriction Lemma (Lemma 5.12). Without loss
of generality, we can assume I is centered at 0; otherwise, the center of I is c and we can bound
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the probability that the polynomial p′ = p− c takes values within the interval I ′ centered at 0 with
|I ′| = |I|.

We first partition the variables into t blocks so that p restricted to each block (i.e., the restricted
polynomial that only depends on the variables in that block) has at least one monomial with the
coefficient at least |I| in magnitude. Consider the following equivalent way of sampling a uniformly
random input to p: apply a block restriction based on the partition above and randomly assign 1
or −1 to the variables in the unrestricted block. Then we have that

Pr[p(A) ∈ I] = Prρ∼Bt,C [pρ(C) ∈ I]

= Prρ,C [pρ(C) ∈ I | pρ is not δ-concentrated] ·Prρ[pρ is not δ-concentrated]

+ Prρ,C [pρ(C) ∈ I | pρ is δ-concentrated] ·Prρ[pρ is δ-concentrated], (56)

where C is a multidimensional Bernoulli random variable.
Let δ = t−1/2. By Lemma 5.12, we have

Prρ∼Bt [pρ is not δ-concentrated] ≤ t−1/2 · (log t)O(d log d) · 2O(d2 log d). (57)

Note that we multiply by the factor 2O(d2 log d) on the right-hand side of Equation (57) so that
it holds for all degrees. This bounds the first summand of Equation (56). To bound the second
summand of Equation (56), we use the following observation from a preliminary version of [MNV16].

Claim 6.15. For any real interval I centered at 0, and any δ-concentrated degree-d multilinear
polynomial q that has at least one monomial with coefficient greater than |I| in magnitude, we have

Pr[q(A) ∈ I] ≤ δ.

Proof. Let q = q′ + µ where µ = Exp[q(A)], and let ν = (L · log δ−1)d where L > 0 is the constant
from Definition 2.15. Since q is δ-concentrated and has at least one monomial with coefficient
greater than |I| in magnitude, we have

|µ|2 ≥ (ν − 1) ·Var[q] ≥ (ν − 1) · |I|2 ≥ 4 · |I|2.

Now since |µ| ≥ 2 · |I|, we note that for all points x ∈ {−1, 1}n where q(x) ∈ I, it must be the case
that |q′(x)| ≥ |µ| − |I|. Also, we have

|µ| − |I| ≥ |µ|
2
≥
√

(ν − 1) ·Var[q]

2
≥
√
ν ·Var[q]

4
=

√
ν

4
·
∥∥q′∥∥

2
. (58)

As a result,

Pr[q(A) ∈ I] ≤ Pr
[
|q′(A)| ≥ |µ| − |I|

]
≤ Pr

[
|q′(A)| ≥

√
ν

4
·
∥∥q′∥∥

2

]
(by Equation (58))

≤ δ. (by Theorem 2.3)

By Claim 6.15, we get

Prρ,C [pρ(C) ∈ I | pρ is δ-concentrated] ≤ δ,

which bounds the second summand of Equation (56). This completes the proof.
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7 Derandomization

7.1 Derandomized Block Restriction Lemma

In this subsection, we show how to derandomize our Block Restriction Lemma, by giving an algo-
rithm for sampling pseudorandom block restrictions (using significantly fewer random bits) so that
the probability a given degree-d polynomial is not concentrated under such a pseudorandom block
restriction is about the same as that for true random block restrictions. Our pseudorandom block
restriction will pick a uniformly random block, and then fix the variables in the remaining blocks
in a pseudorandom fashion (using few truly random bits).

Theorem 7.1 (Derandomized Block Restriction Lemma). For any 0 < δ ≤ 1/16 and 0 < ζ < 1,
there is a polynomial-time algorithm for sampling block restrictions ρ ∈ Bm, for any m ≥ 16,
that uses at most mζ · log n random bits, so that the following holds. For any n-variate degree-d
multilinear polynomial p whose variables are partitioned into m blocks, we have

Prρ [pρ is not δ-concentrated] ≤
(
m−1/2 + δ

)
· (logm)O(ζ−1·d·log d) · (log δ−1)O(ζ−1·d2).

We first define our pseudorandom block restrictions that yields Theorem 7.1. We start with
some notations. Let D be a distribution on {−1, 1}n. Let S be a set of K coordinates and let ω
be an assignment for the coordinates in S. We define Dω to be the distribution on the remaining
n−K unfixed coordinates such that for any a ∈ {−1, 1}n−K ,

Pr[Dω = a] = Pr[D[n]−S = a | DS = ω].

We will refer to Dω as the distribution D conditioned on fixing S to ω.
The main idea of our pseudorandom block restriction is to fix the variables using the output of

a pseudorandom generator (PRG) for PTFs. Recall that a function G : {−1, 1}s → {−1, 1}n is a
PRG of seed length s that ε-fools PTFs of degree d if, for any degree-d PTF f , we have∣∣Prz∼{−1,1}s [f(G(z)) = −1]−Prx∼{−1,1}n [f(x) = −1]

∣∣ ≤ ε.
Definition 7.2. Suppose the variables of a polynomial are arbitrarily partitioned into m blocks.
We call a random block restriction ρ (m, ε)-fooling if it selects a block uniformly at random and
fixes all variables outside the selected block using some distribution D that ε-fools PTFs of degree
2d (in the appropriate number of variables). Moreover, we call such a random block restriction
(m, ε,K)-fooling if D ε-fools PTFs of degree 2d even conditioned on fixing at most K coordinates
and is

(
192 · d · log δ−1 +K

)
-wise independent.

We will use the construction of PRGs for PTFs due to Meka and Zuckerman. First recall that
a multidimensional distribution on {−1, 1}n is called k-wise independent if any k coordinates of
the distribution are independent. A family of hash functions H = {h : [n]→ [`]} is called k-wise
independent if for any (x1, . . . , xk) ∈ [n]k, where x1, . . . , xk are distinct, and any (y1, . . . , yk) ∈ [`]k,
we have

Prh∼H[h(x1) = y1 ∧ · · · ∧ h(xk) = yk] = 1/`k.

There exist k-wise independent distributions that can be sampled in poly(n, k) time usingO (k · log n)
random bits, and there exist 2-wise independent hash families H such that a random h ∈ H can be
sampled using O (k · log(n · `)) bits (see, e.g., [Vad12]).
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The generator in the following theorem views its random seed as a tuple of `+1 disjoint random
strings (for a certain parameter ` ≥ 1), and uses the first string to sample a hash function h, and
the remaining ` strings to get ` samples from a k-wise independent distribution.

Theorem 7.3 ([MZ13]). For 0 < ε < 1, let ` = 2O(d) · log2(ε−1) · ε−(4d+1). Let G : {−1, 1}s →
{−1, 1}n be the following process of generating an assignment for n coordinates using s = 2O(d) ·
(log n) · ε−(8d+3) random bits:

1. Partition the n coordinates into ` buckets using a function h : [n]→ [`] randomly picked from
a 2-wise independent hash family.

2. For each bucket, generate a (`+ 4d)-wise independent distribution for the coordinates in that
bucket.

Then G is a PRG that ε-fools n-variate PTFs of degree d.

Lemma 7.4. For 0 < ε < 1, there exists a (m, ε,K)-fooling random block restriction that is
samplable using s = 2O(d) ·

(
ε−(16d+3) + ε−(8d+2) · (K + log δ−1)

)
· log n random bits.

Proof. Let ` = 2O(d) · log2(ε−1) · ε−(8d+1). Consider the distribution D sampled as follows:

1. Partition the n coordinates into ` buckets using a function h : [n]→ [`] randomly picked from
a 2-wise independent hash family.

2. For each bucket, generate a
(
`+ 4d+K + 192 · d · log δ−1

)
-wise independent distribution for

the coordinates in that bucket.

Note that by Theorem 7.3, D ε-fools PTFs of degree 2d even conditioned on fixing at most K
coordinates. This is because D has sufficient bounded independence for each bucket even condi-
tioned on fixing K coordinates. Also, D is

(
192 · d · log δ−1 +K

)
-wise independent. Note that D

is samplable using s random bits. We then define our (m, ε,K)-fooling random block restriction as
the restriction that randomly selects a block and fixes all variables outside the selected block using
D. Finally, note that the number of random bits needed to select a block is at most log n.

While it is possible to use a (m, ε,K)-fooling random block restriction to obtain a derandomized
block restriction lemma, it requires large seed length to get small error if we do this in one shot. To
deal with this issue, we use a sequence of pseudorandom block restrictions, so that, in each step,
we only set the error parameter to match the probability that a random block restriction does not
make the polynomial concentrated in the current step. Consider a random block restriction defined
as follows. Let m,κ ≥ 16.

1. Partition the m blocks of variables of p into b = m1/κd disjoint super-blocks, where each
super-block has m/b blocks.

2. Apply a (b, ε = b−1,K)-fooling random block restriction on the b super blocks.

3. Repeat the above two steps for the remaining blocks with m replaced by m/b until there is at
most 2d blocks, in which case we randomly choose a single block and fix the other variables
using a

(
192 · d · log δ−1 +K

)
-wise independent distribution.
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If at any round the blocks cannot be partitioned evenly into super-blocks, we can divide them so that
the sizes of any two super-blocks differ by at most 1. We then select a super-block with probability
proportional to its size. This makes sure that a block is selected uniformly at random. To avoid
some technicalities that can be overcome easily, we assume here that at each round, the blocks can
be partitioned evenly into super-blocks. Note that a random block restriction ρ generated as above
can be decomposed into a sequence of sub-restrictions ρ1, . . . , ρt, ρt+1, where t = O (κ · d · log logm)
so that there are at most 2d blocks remaining after ρ1, . . . , ρt, and each ρi, except the last one, is
a (bi, b

−1
i ,K)-fooling random block restriction with bi = m(1−1/κd)i−1/κd. Also, the last restriction

fixes the variables using some
(
192 · d · log δ−1 +K

)
-wise independent distribution distribution. We

call such a random block restriction (m,κ,K)-good. By the above, we have

Lemma 7.5. There exists a (m,κ,K)-good block restriction that is samplable using

2O(d) ·
(
m(19/κ) +m(10/κ) · (K + log δ−1)

)
· log n · κ · log logm

random bits.

To prove Theorem 7.1, we will show that the argument in Section 5 still goes through if we
replace a truly random block restriction with our pseudorandom block restriction described above.
We will need versions of the key lemmas in Section 5 for our pseudorandom block restrictions. In
particular, we need a version of Lemma 4.2 for k-wise independent distributions. We first show a
version of Theorem 2.3 for k-wise independent distributions. The following can be proved in the
same way as Theorem 2.3.

Claim 7.6. For any degree-d multilinear polynomial p : Rn → R, any T ≥ 2d, and any
(
d·T 2/d

2

)
-

wise independent distribution D on {−1, 1}n, we have

Pr [|p(D)| ≥ T · ‖p‖2] ≤ exp
(
−(1/4) · T 2/d

)
.

Proof. Let W = T 2/d

2 . By Markov’s inequality, we have

Pr [|p(D)| ≥ T · ‖p‖2] = Pr
[
|p(D)|W ≥ (T · ‖p‖2)W

]
≤ Exp[|p(D)|W ]

(T · ‖p‖2)W
. (59)

Since D is a (d ·W )-wise independent distribution on {−1, 1}n, we get, using Equation (1), that

Exp[|p(D)|W ] = ‖p‖WW ≤
(

(W − 1)d/2 · ‖p‖2
)W
≤
(
W d/2 · ‖p‖2

)W
. (60)

Combining Equations (59) and (60), we get

Pr
[
|p(D)|W ≥ (T · ‖p‖2)W

]
≤

(
W d/2

T

)W
≤ exp

(
−(1/4) · T 2/d

)
,

as required.

Claim 7.7. For any degree-d multilinear polynomial p that is (δ, γ + 1)-concentrated, let ρ be a
random block restriction for p that picks a uniformly random block and assigns the variables outside
the block using a (192 · d · log δ−1)-wise independent distribution. Then we have that

Prρ[pρ is not (δ, γ)-concentrated] ≤ δ.
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Proof. The proof is the same as that of Lemma 4.2, with Claim 7.6 replacing Theorem 2.3.

Next, we show two recurrence relations that are similar to Lemma 5.3 and Lemma 5.4, but with
respect to our pseudorandom block restrictions.

Definition 7.8. Let Q(d,m, δ, κ,K, a) be the supremum, over all degree-d polynomials p with
α(p) ≤ a, all possible partitions of the variables into m blocks, and all (m,κ,K)-good random
block restrictions ρ, of the probabilities

Prρ [pρ is not δ-concentrated] .

Let Qreg(d,m, δ, κ,K, a, τ) be the same as P but only for τ -regular polynomials. For simplicity, we
will omit some parameters when they are clear in the context. In particular, we will use Q(m,K, a)
(resp. Qreg(m,K, a, τ)) for Q(d,m, δ, κ,K, a) (resp. Qreg(d,m, δ, κ,K, τ)).

Lemma 7.9. For any 0 < τ, δ < 1/4 and a > 0, m > 4, κ ≥ 16, d > 1, and K ≥ H, where
H = τ−1 · (d · log τ−1 · log δ−1)O(d), we have

Q(m,K, a) ≤ 1

m
· τ−1 · (d · log τ−1 · log δ−1)O(d) + 2δ + Expℵ[Qreg(m,K −H,ℵ, τ)],

where ℵ is a non-negative random variable with Exp[ℵ] ≤ O (a).

Proof. The proof is very similar to that of Lemma 5.3, but has a few critical differences. For clarity,
we provide details for this proof. Let p be a degree-d multilinear polynomial whose variables are
partitioned into m blocks. Let ρ be a (m,κ,K)-good random block restriction. Consider the
decision tree given by Theorem 2.11 with ε = δ and γ = 2. Note that the depth of this decision
tree is H. Since a block is chosen uniformly at random, the probability that ρ is not consistent
with any branch of the decision tree is at most H/m.

Next we show the following.

Claim 7.10.

Prρ [pρ is not δ-concentrated] ≤ Expω [Prρω [(pω)ρω is not δ-concentrated]] + 3(H/m),

where the expectation is over random leaves ω of the decision tree, pω is the restriction of p obtained
by fixing the variables on the branch leading to ω as specified by the branch, and ρω is an (m,κ,K−
H)-good random block restriction.

Proof. We view ρ as ρ = (`, λ), where ` is the selected block and λ is an assignment to the variables
outside block `. We can view the distribution of λ as a sequence of distributions, each ε-fooling PTFs
of degree 2d even conditioned on fixing at most K coordinates, and being

(
192 · d · log δ−1 +K

)
-

wise independent.
For each leaf ω, let Rω be the set of (m,κ,K)-good random restrictions consistent with the

branch leading to ω. As observed above, the probability ξ of choosing a restriction from the
complement of ∪ωRω is at most H/m. We get

Prρ[pρ is not δ-concentrated] ≤ (1− ξ) ·Prρ∈∪ωRω [pρ is not δ-concentrated] + ξ. (61)
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By conditioning on ρ ∈ Rω, we get that Prρ∈∪ωRω [pρ is not δ-concentrated] equals to∑
ω

Prρ[pρ is not δ-concentrated | ρ ∈ Rω] ·Pr[ρ ∈ Rω | ρ ∈ ∪ωRω].

As ρ is K-wise independent and K ≥ H, the probability of choosing ρ ∈ Rω conditioned on
ρ ∈ ∪ωRω is 2−`ω · (1 − ξ)−1, where `ω is the length of the branch leading to ω. Hence, the
right-hand side of Equation (61) is at most

Expω[Prρ∈Rω [pρ is not δ-concentrated]] + ξ. (62)

Each (m,κ,K)-good restriction ρ = (`, λ) ∈ Rω can be viewed as a restriction of the variables on
the branch leading to ω (as specified by the branch) plus a restriction λ′ to the remaining variables
outside block `. So we can express pρ as (pω)ρ′ , where ρ′ = (`, λ′).

Note that ρ′ is a (m,κ,K−H)-good restriction, which comes from the set of those (m,κ,K−H)-
good restrictions that chose block ` outside at most H blocks containing the variables on the branch
leading to ω. The set of all such restrictions ρ′ has the probability mass at least 1 −H/m within
the set of all (m,κ,K −H)-good restrictions ρω (which pick block ` uniformly at random from the
set of all m blocks). Therefore, we can upperbound the expression in Equation (62) by

Expω[Prρ′ [(pω)ρ′ is not δ-concentrated]] + ξ

≤ (1−H/m)−1 ·Expω[Prρω [(pω)ρω is not δ-concentrated]] + ξ

≤ Expω[Prρω [(pω)ρω is not δ-concentrated]] + ξ + 2(H/m),

where the last inequality uses the fact that (1 − x)−1 ≤ 1 + 2x whenever 0 < x ≤ 1/2. The claim
follows.

The proof can now proceed in the same way as that of Lemma 5.3, but instead of using
Lemma 4.2 there, we use Claim 7.7 and the fact that ρω fixes the variables (192 · d · log δ−1)-wise
independently.

Lemma 7.11. For any real 0 < τ, δ < 1/4 and a > 0, m > 4, κ ≥ 16, K >≥ 0 and d > 1, we have

Qreg(m,K, a, τ) ≤ Expℵ[Q(m1−1/κd,K,ℵ)],

where ℵ is a non-negative random variable with Exp[ℵ] = O
(
d3am−1/2κd + d4τ1/(8d) +m−1/κd

)
.

Proof. For a (m,κ,K)-good random block restriction ρ, we can decompose it into two restrictions
ρ1 and ρ′, where ρ1 is a (b = m1/κd, ε = m−1/κd,K)-fooling random block restriction and ρ′ is a
(m1−1/κd, κ,K)-good random block restriction. Then

Prρ[pρ is not δ-concentrated] = Expρ1

[
Prρ′ [(pρ1)ρ′ is not δ-concentrated]

]
≤ Expρ1

[
Q(m1−1/κd,K, α(pρ1))

]
.

Therefore, we need to show

Expρ1
[α(pρ1)] = O

(
d3ab−1/2 + d4τ1/(8d) + ε

)
.
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From Equation (36), for a truly random block restriction σ ∼ Bb, we have

Expσ[α(pσ)] = O
(
d3ab−1/2 + d4τ1/(8d)

)
.

Thus, it suffices to show that

| Expσ[α(pσ)]−Expρ1
[α(pρ1)] |≤ ε.

Consider a degree-d multilinear polynomial p whose variables are partitioned into m blocks.
Fixed a block `. Let A` be an assignment to the variables in block `, B be a vector of dimension
the same as the number of variables in block `, and t be an arbitrary number. Define T`,A`,B,t to
be the boolean function on input D such that T`,A`,B,t(D) = −1 if and only if

|pD(A`)|2 ≤ t · |DB pD(A`)|2.

It is easy to see that T`,A`,B,t is a PTF of degree at most 2d.
Now for a block, `, we let A` denote the random assignment to the variables in ` and let A¯̀

denote the random assignment to the variables that are not in `. Let D be the distribution by
which ρ1 fixes the variables. Note that D ε-fools PTF of degree 2d. We have

Expσ[α(pσ)] =
1

b
·
∑
`∈[b]

ExpA¯̀
[α(pA¯̀)]

=
1

b
·
∑
`

Exp

[
min

{
1,
|DB pA¯̀(A`)|2

|pA¯̀(A`)|2

}]

=
1

b
·
∑
`

∫ 1

0
Pr
[
|pD(A`)|2 ≤ t · |DB pD(A`)|2

]
dt

=
1

b
·
∑
`

∫ 1

0
Pr [T`,A`,B,t(A¯̀)] dt

≤ 1

b
·
∑
`

∫ 1

0
(Pr [T`,A`,B,t(D)] + ε) dt

≤

(
1

b
·
∑
`

∫ 1

0
Pr [T`,A`,B,t(D)] dt

)
+ ε

= Expρ1
[α(pρ1)] + ε.

The other direction can be shown similarly.

We are now ready to prove the following result, which, together with our construction of
(m,κ,K)-good random block restrictions in Lemma 7.5, will imply Theorem 7.1

Theorem 7.12. There exist constants B,C > 0 such that, for any d > 0, m,κ ≥ 16, 0 < δ ≤ 1/16,
0 < a ≤ 1, and K = m8/κ · (d · logm · log δ−1)C·d, we have

Q(d,m, δ, κ,K, a) ≤ (a ·m−1/2 + δ) · (logm)Bκ·d·log d · (log δ−1)Bκ·d
2
. (63)
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Proof. The proof of is similar to that of Theorem 5.9. As in the proof of Theorem 5.9, we can
assume, for a sufficiently large constant B > 0, that both

a ≥ (c · log δ−1)−2d, (64)

and
m1/(2κ·d) ≥ (c · log δ−1)2d, (65)

where c > 0 is the constant from Corollary 3.7. Note that if Equation (64) if false. Then by
corollary 3.7, the polynomial is (δ, 2)-concentraed and by Claim 7.7 such a polynomial will remain
δ-concentrated under restrictions that fix variables (192 ·d · log δ−1)-wise independently except with
probability at most δ.

Now let τ = m−8/κ and H = τ−1 · (d · log τ−1 · log δ−1)O(d). Note that K ≥ H when C is
sufficiently large. Then combining Lemma 7.9 and Lemma 7.11, and proceeding as in the proof of
Claim 5.11, we have, for a sufficiently large constant E,

Q(m,K, a) ≤ (a ·m−1/2 + δ) · (logm)E·κ·d·log d · (log δ−1)E·κ·d
2

+ Expℵ[Q(m1−1/(κd),K −H,ℵ)], (66)

where ℵ is a non-negative random variable with Exp[ℵ] = O
(
d4 · a ·m−1/(2κd)

)
.

To solve the recurrence relation given by Equation (66), we again use induction on m. The base
case is m ≤ 2d. As a ≥ (c · log δ−1)−2d, in this case the right hand side of Equation (63) is greater
than 1 for when B is sufficiently large. Now suppose Theorem 5.9 holds for all smaller values of m.
Let m1 = m1−1/(κd). Then when C is sufficiently large, we have

K −H ≥ m8/κ
1 · (d · logm1 · log δ−1)C·d.

Therefore, we can apply the induction hypothesis on

Q(m1−1/(κd),K −H,ℵ)

in Equation (66). After applying the induction hypothesis and proceeding as in the proof of
Theorem 5.9, we can complete the induction step and hence the proof.

By Lemma 7.5 and Theorem 7.12, there exist constants B,C > 0 and a pseduorandom block
restriction samplable using

m(19/κ) · log n · κ · (d · logm · log δ−1)C·d (67)

random bits such that for any degree-d multilinar polynomial p,

Prρ [pρ is not δ-concentrated] ≤
(
m−1/2 + δ

)
· (logm)B·κ·d·log d · (log δ−1)B·κ·d

2
. (68)

Note that we can assume without loss of generality that both

κ ≤ logm

d2 · log logm

and
(d · logm · log δ−1)C·d ≤ m1/κ.

Otherwise, the right hand side of the Equation (68) is greater than 1 when B is sufficiently large.
Then Equation (67) is at most

mO(1/κ) · log n.

By changing the parameter κ, we obtain Theorem 7.1.
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7.2 Derandomized Littlewood-Offord type anticoncentration bounds

Here we show two versions of derandomized anticoncentration bounds for degree-d multilinear
polynomials. We first show the following.

Theorem 7.13. For any positive integers t and d, and 0 < ζ < 1, there exists a distribution D on
{−1, 1}n, samplable in poly(n) time using tζ/d · log n random bits, such that the following holds. For
any real interval I, and any n-variate degree-d multilinear polynomial p that has at least t disjoint
degree-d monomials with coefficient at least |I| in magnitude, we have

Pr [p(D) ∈ I] ≤ t−
1
2d · (log t)O(ζ−1·d2).

Let us call a degree-d monomial good if its coefficient is at least |I| in magnitude, and say that a
set of variables contains a monomial if every variable in the monomial is in the set. Also, let us call
a partition of variables into blocks good if every block contains at least one good monomial. From
the analysis in Theorem 6.14, it is easy to see that if we are explicitly given a degree-d polynomial
with at least t disjoint good monomials, then we can obtain a good partition with t blocks and
use our derandomized Block Restriction Lemma to generate the inputs so that the polynomial will
take value inside the interval with probability at most about t−1/2.

However, we want to derandomize obliviously, without knowing the structure of the polynomial.
The idea is to partition the variables randomly, using bounded-independent hashing, so that we get
a good partition with high probability. To show that bounded-independent hashing will produce a
good partition with high probability, we need the following version of Chernoff bounds for bounded-
independent random variables.

Theorem 7.14 ([SSS95]). Let ε ≤ 1. If X is the sum of k-wise independent random variables
taking values in [0, 1], and µ = Exp[X] such that k ≤ bε2µe−1/2c, then

Pr[|X − µ| > εµ] < exp(−bk/2c).

We now show the following.

Lemma 7.15. Let p be a n-variate degree-d multilinear polynomial with at least t disjoint good
monomials. If the variables are partitioned into m = t1/d/ log2/d(t) blocks using a random hash
function from a (Cd log t)-wise independent hash family, where C > 0 is some constant, then the
probability that the partition is not good is at most 1/t.

Proof. Fix a block `. Let m1, . . . ,mt be the t disjoint good monomials. For i = 1, . . . , t, let
Xi be the indicator random variable for the event that ` contains mi, using a (Cd log t)-wise
independent hashing (i.e., Xi is 1 if every variable in mi is hashed to `, and 0 otherwise). Note that
Pr[Xi = 1] = 1/md for every i, andX1, . . . , Xt are (C log t)-wise independent. LetX = X1+· · ·+Xt

and µ = Exp[X] = t/md = log2 t. By Theorem 7.14, we have

Pr[X = 0] ≤ Pr[|X − µ| > (1/2)µ] ≤ exp(−b(C log t)/2c) ≤ 1/t2,

where the last inequality holds if C is sufficiently large. Taking the union bound over the m blocks,
we conclude that probability that there exists one block that does not contain any good monomial
is at most 1/t.
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We will also need the following version of Claim 6.15 for bounded-independent distributions,
whose proof is the same as Claim 6.15, with Claim 7.6 replacing Theorem 2.3.

Claim 7.16. For any real interval I centered at 0, any δ-concentrated degree-d multilinear poly-
nomial q that has at least one monomial with coefficient greater than |I| in magnitude, and any(
192 · d · log δ−1

)
-wise independent distribution D on {−1, 1}n, we have

Pr[q(D) ∈ I] ≤ δ.

Proof of Theorem 7.13. Consider the following process of sampling from D.

1. Partition the variables of p into m = t1/d/ log2/d(t) blocks using (Cd log t)-wise independent
hashing, where C is the constant from Lemma 7.15.

2. Apply the derandomized Block Restriction Lemma (Theorem 7.1) based on the partition in
the previous step with δ = m−1/2.

3. Fix the variables in the last block (i.e., the unrestricted block after applying random block
restriction in the previous step) using a (192 · d · log δ−1)-wise independent distribution.

The amount of random bits used in the first step is O (d · log t · log n), and the amount of random
bits needed in the second step is at most

mζ · log n ≤ tζ/d · log n.

The last step only needs O
(
d · log δ−1 · log n

)
random bits. Therefore, the total amount of random

bits needed for the above process is at most O
(
tζ/d · log n

)
.

We now show the correctness. By Lemma 7.15, the probability that the partition obtained in the
first step is not good is at most 1/t. Given that the partition in the first step is good, any restricted
polynomial after the second step will have at least one good monomial, and by Theorem 7.1 the
probability that the restricted polynomial is not δ-concentrated is at most(

m−1/2 + δ
)
·
(
logm · log δ−1

)O(ζ−1·d2)
.

Finally, given that the restricted polynomial in the second step has at least one good monomial
and is δ-concentrated, the probability that it falls inside the interval I after taking an input from
a (192 · d · log δ−1)-wise independent distribution is at most δ by Claim 7.16. Therefore, by noting
δ = m−1/2, the probability that an input obtained in the above process makes p fall inside I is at
most

1/t+
(
m−1/2

)
· (logm)O(ζ−1·d2) +m−1/2 ≤ t−1/(2d) · (log t)O(ζ−1·d2) .

This completes the proof.

Next, we show another derandomized anticoncentration bound that is quantitatively better
when the polynomials are dense (i.e., have many good monomials).

Theorem 7.17. For any positive integers t and d, and 0 < ζ < 1, there exists a distribution D
on {−1, 1}n, samplable in poly(n) time using tζ · log n random bits, such that the following holds.
For any real interval I, and any n-variate degree-d multilinear polynomial p with at least t · nd−1

degree-d monomials whose coefficients are at least |I| in magnitude, we have

Pr [p(D) ∈ I] ≤ t−
1
2 · (log t)O(ζ−1 ·d2).
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Remark 7.18. For dense polynomials with t = n1−o(1) and any ε > (C · d2 · log log n)/ log n, where
C is some constant, setting

ζ = (C · d2 · log logn)/(ε · log n),

we get that the bound in Theorem 7.17 is at most n−1/2+o(1)+ε, matching the bound in Theorem 6.14

up to the no(1)+ε factor, and that the seed length is at most (log n)O(ε−1·d2). Such a short seed is
beyond reach of the naive derandomization using the PRG from Theorem 7.3, when the error is
inverse-polynomially small.

To show Theorem 7.17, we a gain use bounded-independent hashing to partition the variables.

Lemma 7.19. Let p be a n-variate degree-d multilinear polynomial with at least t · nd−1 good
monomials. If the variables are partitioned into m = t/(C log t) blocks using a random hash function
from a (Cd log t)-wise independent hash family, where C is a constant, then the probability that the
partition is not good is at most 1/t.

Proof. We first consider using full randomness to partition the variables. It will be convenient to
view a set of variables as an n-bit characteristic string, where a coordinate i is 1 if the ith variable
is in the set, and 0 otherwise. For a set S, we will also use S to denote its characteristics string.
Let K = (C/2) log t, and let p be so that 1− (1− p)K = 1/m.

Consider a random set U that picks each variable independently with probability p. Note
that U can be viewed as a random n-bit string such that each coordinate is 1 with probability p.
Also, given U , we can compute the number of good monomials contained in U , using a degree-d
polynomial, which is simply the sum of the t · nd−1 monomials of p. Let q denote this polynomial
and let µ = Exp[q(U)]. Now define r(U) = (q(U)− µ)2. Note that r is a polynomial of degree at
most 2d and, given our value of p, we have

µ2 > 2 ·Exp[r(U)]. (69)

Also, if U does not contain any good monomial, then r(U) = µ2.
Let U1, . . . , UK be K independent random sets, where each Ui picks each variable independently

with probability p. Let T be a random set that picks each variable independently with probability
1/m = 1 − (1 − p)K . Note that U1 ∪ · · · ∪ UK and T have the same distribution. Given a set T ,
consider the following way of picking a tuple of K random subsets V T = V T

1 , . . . , V
T
K of T : pick

V T from the distribution of U1, . . . , UK , conditioned on U1 ∪ · · · ∪ UK = T . Now define f as

f(T ) = ExpV T

[
K∏
i=1

r(V T
i )

]
.

Note that f can be written as a polynomial of degree at most 2dK. To see this, consider the
following equivalent way of picking V T0 for some T0: for each variable that appears in T0, we assign
it to each of the K subsets with probability p, conditioned on at least one subset containing the
variable. Now consider picking a tuple of K random sets W = W1, . . . ,WK in the above way, with
T0 = {1, . . . , n}. Then it is easy to see that, for any given set T , W ∩T = W1 ∩T, . . . ,W1 ∩T (i.e.,
after we pick W we remove all the variables that are not in T ) and V T have the same distribution.
Therefore, we have

f(T ) = ExpW

[
K∏
i=1

r(Wi ∩ T )

]
,
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which is clearly a polynomial of degree at most 2dK since r is of degree at most 2d. Note that
since each V T

i is a subset of T , if T does not contain any good monomial, then

f(T ) = µ2K . (70)

Also, by the definition of the distribution for V T , we have

ExpT [f(T )] = ExpT

[
ExpV T

[
K∏
i=1

r(V T
i )

]]

= ExpU1,...,UK

[
K∏
i=1

r(Ui)

]

=
K∏
i=1

Exp [r(Ui)]

< µ2K/2K , (71)

where the last inequality is by Equation (69).
Now consider partitioning the n variables intom blocks, using a (Cd log t)-wise independent hash

family H. Let D be a random n-bits string such that the coordinates are (2dK)-wise independent
and each coordinate is 1 with probability 1/m. Let T be a random set that takes each variable
independently with probability 1/m. Then, for a block ` ∈ [m], we have

Prh∼H[` does not contain any good monomial under h]

≤ PrD[f(D) = µ2K ] (by Equation (70))

≤ PrD
[
f(D) > 2K ·ExpT [f(T )]

]
(by Equation (71))

= PrD
[
f(D) > 2K ·ExpD[f(D)]

]
≤ 2−K

≤ t−C/2,

where the forth line above is by the fact that f is a polynomial of degree at most 2dK = Cd log t and
that D is (Cd log t)-wise independent, and the second last line is by Markov’s inequality. Finally,
by the union bound over the m blocks, and for C sufficiently large, we get that the probability that
there exists one block that does not contain any good monomial is at most 1/t.

Given Lemma 7.19, Theorem 7.17 is now proved in the same way as Theorem 7.13.

8 Open problems

We proved a restriction lemma for PTFs of degree d ≥ 1, and used it to derive new lower bounds
against constant-depth circuits with PTF gates. What are other applications of the (derandomized)
PTF Restriction Lemma? For example, can it be used to get a PRG for constant-depth PTF
circuits? Can we get a nontrivial (better than brute force) SAT algorithm for PTFs (constant-
depth PTF circuits)? Finally, what are the applications of derandomized Littlewood-Offord type
anticoncentration bounds?
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[Erd45] Paul Erdős. On a lemma of littlewood and offord. Bull. Amer. Math. Soc., 51:898–902,
1945. 6, 8

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984. 1, 3,
7

[GHR92] Mikael Goldmann, Johan H̊astad, and Alexander A. Razborov. Majority gates vs.
general weighted threshold gates. Computational Complexity, 2:277–300, 1992. 3, 8

[GL94] Craig Gotsman and Nathan Linial. Spectral properties of threshold functions. Combi-
natorica, 14(1):35–50, 1994. 6, 9

[H̊as89] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In S. Micali,
editor, Randomness and Computation, pages 143–170, Greenwich, Connecticut, 1989.
Advances in Computing Research, vol. 5, JAI Press. 1, 3, 7

51



[H̊as98] Johan H̊astad. The shrinkage exponent of de Morgan formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998. 7

[H̊as16] Johan H̊astad. An average-case depth hierarchy theorem for higher depth. Electronic
Colloquium on Computational Complexity (ECCC), 23:41, 2016. 7

[HMP+93] András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán.
Threshold circuits of bounded depth. J. Comput. Syst. Sci., 46(2):129–154, 1993. 8

[IN93] Russell Impagliazzo and Noam Nisan. The effect of random restrictions on formula size.
Random Struct. Algorithms, 4(2):121–134, 1993. 7

[IPS97] Russell Impagliazzo, Ramamohan Paturi, and Michael E. Saks. Size-depth tradeoffs for
threshold circuits. SIAM J. Comput., 26(3):693–707, 1997. 1, 4, 7, 8

[Kan11] Daniel M. Kane. A small PRG for polynomial threshold functions of Gaussians. In
IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm
Springs, CA, USA, October 22-25, 2011, pages 257–266, 2011. 9

[Kan12] Daniel M. Kane. A structure theorem for poorly anticoncentrated Gaussian chaoses
and applications to the study of polynomial threshold functions. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ,
USA, October 20-23, 2012, pages 91–100, 2012. 9

[Kan14] Daniel M. Kane. The correct exponent for the Gotsman-Linial conjecture. Computa-
tional Complexity, 23(2):151–175, 2014. 1, 6, 8, 9, 12, 14, 28, 36

[Kan15] Daniel M. Kane. A polylogarithmic PRG for degree 2 threshold functions in the Gaus-
sian setting. In 30th Conference on Computational Complexity, CCC 2015, June 17-19,
2015, Portland, Oregon, USA, pages 567–581, 2015. 9

[Khr71] V.M. Khrapchenko. A method of determining lower bounds for the complexity of
π-schemes. Matematicheskie Zametki, 10(1):83–92, 1971. English translation in Math-
ematical Notes of the Academy of Sciences of the USSR. 7

[KW16] Daniel M. Kane and Ryan Williams. Super-linear gate and super-quadratic wire lower
bounds for depth-two and depth-three threshold circuits. In Proceedings of the Forty-
Eighth ACM Symposium on Theory of Computing (STOC’16), 2016. 1, 4, 7, 8, 31, 32,
33

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier
transform, and learnability. J. ACM, 40(3):607–620, 1993. 1

[LO43] John E. Littlewood and A. Cyril Offord. On the number of real roots of a random
algebraic equation (III). Rec. Math. (Mat. Sbornik) N.S., 12 (54)(3):277–286, 1943. 6,
8, 31

[MK61] J. Myhill and W. H. Kautz. On the size of weights required for linear-input switching
functions. IRE Transactions on Electronic Computers, EC-10(2):288–290, June 1961.
3

52



[MNV16] Raghu Meka, Oanh Nguyen, and Van Vu. Anti-concentration for polynomials of inde-
pendent random variables. Theory of Computing, 12(11):1–17, 2016. 2, 6, 37, 38

[MOO10] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of
functions with low influences: Invariance and optimality. Annals of Mathematics,
171(1):295–341, 2010. 9, 14

[MP43] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5(4):115–133, 1943. 3

[MP69] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational
Geometry. MIT Press, Cambridge, Mass., 1969. (3rd Edition published in 1988). 3

[MZ13] Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold
functions. SIAM J. Comput., 42(3):1275–1301, 2013. 9, 40

[Nis94] Noam Nisan. The communication complexity of threshold gates. In In Proceedings of
Combinatorics, Paul Erdos is Eighty, pages 301–315, 1994. 4, 8

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. J. ACM, 51(2):231–262, 2004. 3

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. 10

[OS08] Ryan O’Donnell and Rocco A. Servedio. Extremal properties of polynomial threshold
functions. J. Comput. Syst. Sci., 74(3):298–312, 2008. 9

[Per04] Yuval Peres. Noise Stability of Weighted Majority. arXiv.math/0412377, 2004. 36

[PS94] Ramamohan Paturi and Michael E. Saks. Approximating threshold circuits by rational
functions. Inf. Comput., 112(2):257–272, 1994. 8

[PZ93] Mike Paterson and Uri Zwick. Shrinkage of de Morgan formulae under restriction.
Random Struct. Algorithms, 4(2):135–150, 1993. 7

[Raz87] Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a
complete basis with logical addition. Mathematical Notes of the Academy of Sciences
of the USSR, 41(4):333–338, 1987. 3

[Raz92] Alexander A. Razborov. On small depth threshold circuits. In Otto Nurmi and Esko
Ukkonen, editors, Algorithm Theory — SWAT ’92: Third Scandinavian Workshop on
Algorithm Theory Helsinki, Finland, July 8–10, 1992 Proceedings, pages 42–52, Berlin,
Heidelberg, 1992. Springer Berlin Heidelberg. 3

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci.,
55(1):24–35, 1997. 3

[RSO94] Vwani Roychowdhury, Kai-Yeung Siu, and Alon Orlitsky. Theoretical Advances in
Neural Computation and Learning, chapter Neural Models and Spectral Methods, pages
3–36. Springer US, Boston, MA, 1994. 33

53



[RST15] Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case depth hi-
erarchy theorem for boolean circuits. In Venkatesan Guruswami, editor, IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17-20 October, 2015, pages 1030–1048. IEEE Computer Society, 2015. 7

[Sak93] Michael E. Saks. Slicing the hypercube. In K. Walker, editor, Surveys in Combinatorics,
1993, pages 211–256. Cambridge University Press, 1993. 9

[SB91] Kai-Yeung Siu and Jehoshua Bruck. On the power of threshold circuits with small
weights. SIAM J. Discrete Math., 4(3):423–435, 1991. 8

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pages 77–82. ACM, 1987. 3

[SRK94] Kai-Yeung Siu, Vwani P. Roychowdhury, and Thomas Kailath. Rational approximation
techniques for analysis of neural networks. IEEE Trans. Information Theory, 40(2):455–
466, 1994. 8

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds
for applications with limited independence. SIAM J. Discrete Math., 8(2):223–250,
1995. 46

[STT12] Rocco A. Servedio, Li-Yang Tan, and Justin Thaler. Attribute-efficient learning and
weight-degree tradeoffs for polynomial threshold functions. In COLT 2012 - The 25th
Annual Conference on Learning Theory, June 25-27, 2012, Edinburgh, Scotland, pages
14.1–14.19, 2012. 9

[Sub61] Bella A. Subbotovskaya. Realizations of linear function by formulas using ∨, &, −.
Doklady Akademii Nauk SSSR, 136(3):553–555, 1961. English translation in Soviet
Mathematics Doklady. 1, 7

[Tal14] Avishay Tal. Shrinkage of de Morgan formulae by spectral techniques. In 55th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014, pages 551–560, 2014. 7

[Tam16] Suguru Tamaki. A satisfiability algorithm for depth two circuits with a sub-quadratic
number of symmetric and threshold gates. Electronic Colloquium on Computational
Complexity (ECCC), 23:100, 2016. 4

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1–336, 2012. 39

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds.
SIAM J. Comput., 42(3):1218–1244, 2013. 4

[Wil14] Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.
3, 4

54



[Win61] Robert O. Winder. Single stage threshold logic. In Proceedings of the Second Annual
Symposium on Switching Circuit Theory and Logical Design (FOCS), pages 321–332,
Oct 1961. 33

[Yao85] Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (prelimi-
nary version). In Proceedings of the Twenty-Sixth Annual Symposium on Foundations
of Computer Science (FOCS), Portland, Oregon, USA, 21-23 October 1985, pages 1–10,
1985. 1, 3, 7

[Yao90] Andrew Chi-Chih Yao. On ACC and threshold circuits. In Proceedings of the Thirty-
First Annual Symposium on Foundations of Computer Science (FOCS), St. Louis, Mis-
souri, USA, October 22-24, 1990, Volume II, pages 619–627, 1990. 1, 3

55


	Introduction
	Circuit complexity
	Our contributions
	Related work
	Our proof techniques

	Preliminaries
	Notation
	Boolean functions and polynomial threshold functions
	Concentration and anticoncentration for polynomials
	Invariance principle for polynomials
	Random block restrictions and concentrated polynomials

	Block Restriction Lemma: A simple bound
	Regularization
	Proof of the simple bound

	Block Restriction Lemma with Optimal Exponent: Weak version
	Setting up the recurrence
	Solving the recurrence

	Block Restriction Lemma with Optimal Exponent: Strong version
	Regularization
	Setting up the recurrence
	Solving the recurrence

	Applications
	Lower bounds for depth-2 circuits with PTF gates
	Lower bounds for depth-3 circuits with PTF gates
	Lower bounds for constant-depth circuits with PTF gates
	Influence bound for PTFs
	Littlewood-Offord type anticoncentration bounds for polynomials

	Derandomization
	Derandomized Block Restriction Lemma
	Derandomized Littlewood-Offord type anticoncentration bounds

	Open problems

