Math 184A Homework 7

Spring 2018

This homework is due on gradescope by Friday June 8th at 11:59pm. Remember to justify your work even if the problem does not explicitly say so. Writing your solutions in \LaTeX is recommend though not required.

Question 1 (Avoidance Bounds, 20 points). From the book we know that \(S_n(1432) \leq 9^n\). Find a constant \(C\) so that \(S_n(321456987) \leq C^n\) for all \(n\).

Solution. First let’s prove,

Claim 1. \(S_n(123) \leq 9^n\)

Proof. Since any permutation that avoids 321 must also avoid 1432, we have \(S_n(321) \leq S_n(1432) \leq 9^n\), and by reflection we have \(S_n(123) = S_n(321)\). Hence the claim holds.

Claim 2. \(S_n((31245) \oplus 1) = S_n(321456) \leq 36^n\)

Proof. Since 3214 is the reverse of 4123, which is the complement of 1432, we have

\[S_n((321) \oplus 1) = S_n(3214) = S_n(4123) = S_n(1432) \leq 9^n\]

By claim 1,

\[S_n(1 \oplus (12)) = S_n(123) \leq 9^n\]

By theorem 14.17,

\[S_n(321456) = S_n((321) \oplus 1 \oplus (12)) \leq (\sqrt{9} + \sqrt{9})^{2n} = 36^n\]

By theorem 14.17 again,

\[S_n(321456987) = S_n((32145) \oplus 1 \oplus (321)) \leq (\sqrt{36} + \sqrt{9})^{2n} = (6 + 3)^{2n} = 81^n\]

Hence \(S_n(321456987) \leq C^n\) holds for all \(n\) if we take \(C = 81\).

Question 2 (Hill Avoidance, 40 points). Let a \(k\)-hill in a permutation be a subsequence of \(2k - 1\) of the entries the first \(k\) of which are in increasing order and the last \(k\) of which are in decreasing order. Note that a \(k\)-hill is not a single pattern. For example, a 2-hill is either an instance of the pattern 132 or an instance of the pattern 231.

(a) Show that the number of permutations of \([n]\) with no 2-hill is \(2^{n-1}\). [15 points]

Solution. The number of permutations with no 2-hill = \(S_n(132, 231) = \sum_{m=1}^{n}(\text{the number of } n\text{-permutations that avoid (132, 231) where } n \text{ is located at the } m\text{-th position})\). Suppose \(n\) is located at the \(m\)-th position.

(1) If \(m = 1\), \(n\) cannot engage in any forbidden patterns with entries that appear after \(n\), hence for the whole permutation to avoid (132, 231), it suffices to have the last \(n - 1\) entries to avoid (132, 231). Hence the number of \(n\)-permutations that avoid (132, 231) where \(n\) is located at the \(m\)-th position = \(S_{n-1}(132, 231)\).
(2) If $1 < m < n$, then in order to avoid 132 any entries located at the right of n must be greater than those at the left of n, otherwise there exists (a,b) such that $a < b < n$ where a(resp. b) is at the right(resp. left) of n, then (a,b,n) will form a 132 pattern. Similarly, to avoid 231 any entries located at the right of n must be greater than those at the left of n. No permutation can satisfy both of these two requirements, hence the number of n-permutations that avoid (132, 231) where n is located at the m-th position = 0.

(3) If $m = n$, n cannot engage in any forbidden patterns with entries that appear before n, hence for the whole permutation to avoid (132, 231), it suffices to have the first $n - 1$ entries to avoid (132, 231). Hence the number of n-permutations that avoid (132, 231) where n is located at the m-th position = $S_{n-1}(132, 231)$.

Therefore we have, $S_n(132, 231) = 2 * S_{n-1}(132, 231)$, solving the recurrence relation with the initial condition $S_1(132, 231) = 1 = 2^0$, we obtain $S_n(132, 231) = 2^{n-1}$ for all n.

(b) Show that the number of permutations of $[n]$ with no k-hill is at most $(4(k-1)^2)^n$. [Hint: try to find a decreasing sequence among elements that are the largest of a k-term increasing subsequence.] [25 points]

Solution. Let us say that an entry x is of left order i if x is the top of an increasing subsequence of length i, but there is no increasing subsequence of length $i + 1$ whose top is x.

Let us say that an entry x is of right order i if x is the top of a decreasing subsequence of length i, but there is no decreasing subsequence of length $i + 1$ whose top is x.

The for all i, elements of left order i must form a decreasing subsequence and elements of right order i must form an increasing subsequence.

For any permutation that avoids a k-hill, the minimum of the left order and the right order of x is at most $k - 1$ for all $x \in [n]$ [otherwise there will be a k-hill].

We define A^l_m to be the set of all elements contained in $[n]$ whose left order is m and whose right order is greater than or equal to m for $1 \leq m \leq n$.

And we define A^r_m to be the set of all elements contained in $[n]$ whose right order is m and whose left order is greater than m for $1 \leq m \leq n$.

For any k-hill avoiding permutation, $\{A^l_m\}_{m=1}^{k-1} \cup \{A^r_m\}_{m=1}^{k-1}$ forms a partition of $[n]$. Therefore, any k-hill avoiding permutation can be decomposed into $k - 1$ classes of increasing subsequence and $k - 1$ classes of decreasing subsequence. There are $(2(k-1))^n$ ways to partition the elements into $2(k-1)$ classes and there are less than $(2(k-1))^n$ ways to assign each position to one of the subsequences, completing the proof.

Question 3 (Marriage Lemma, 40 points). The Marriage Lemma states that if you are given two sets S and T of size n and a set E of pairs of one element of each set, then there is a matching between S and T (namely a set of n pairs from E using each element of S and each element of T exactly once) unless there is some subset c so that the total number of elements of T that pair with some element of S' is less than $|S'|$.

Prove the Marriage Lemma using Dilworth’s Theorem.

Solution. For all $s \in S$, let A_s be the set of elements $t \in T$ such that (s, t) is contained in E.

(1) If for all subsets $S' \subset S$, we have $| \bigcup_{s \in S'} A_s | \geq |S'|$

Consider the poset P whose elements are those of $S \cup T$, where $t \leq s$ if and only if $t \in T, s \in S$ such that $t \in A_s$, and no other comparisons hold.

Claim. Any chain of P can consist of at most one element from S(resp. T)

Proof. Any two elements of S(resp. T) are not comparable, therefore they cannot be in the same chain.

Claim. The size of the largest antichain is n.

Proof. Assume for sake of contradiction that there exists an antichain of size $n + 1$, suppose this antichain contain i elements from S and j elements from T, we call these elements $\{s_1, s_2 \ldots s_i\}$ and $\{t_1, t_2 \ldots t_j\}$.
Notice that \(i, j \geq 1 \) and \(i + j = n + 1 \Rightarrow j = n + 1 - i > n - i \).

For \(1 \leq m \leq j \), \(t_m \) is not comparable with \(s_k \) for \(1 \leq k \leq i \) by the definition of an antichain \(\Rightarrow t_m \notin \bigcup_{k=1}^{i} A_{s_k} \Rightarrow t_m \in T \setminus \bigcup_{k=1}^{i} A_{s_k} \Rightarrow \{t_1, t_2 \ldots t_j\} \subseteq T \setminus \bigcup_{k=1}^{i} A_{s_k} \Rightarrow j = |\{t_1, t_2 \ldots t_j\}| \leq |T \setminus \bigcup_{k=1}^{i} A_{s_k}| = |T| - |\bigcup_{k=1}^{i} A_{s_k}| \leq n - |\{s_1, s_2 \ldots s_i\}| \leq n - i \) by our previous assumption.

But \(j > n - i \) and \(j \leq n - i \) cannot both hold, contradiction! Hence the size of the largest antichain is at most \(n \).

We show that there exists an antichain of size \(n \).

Consider the set \(S \), notice that any two elements of \(S \) are not comparable, hence \(S \) is an antichain, and \(|S| = n \).

By Claim 1, any chain in \(P \) can consist of at most 2 elements. By Dilworth’s Theorem, the number of chains in the minimum chain cover of \(P \) is \(n \). To cover all \(2n \) elements in \(P \), every chain in the minimum chain cover must consist of exactly 2 elements, namely, one from \(S \) and one from \(T \). Since the chains are disjoint, we have therefore proved that there exist a matching between \(S \) and \(T \).

(2) If there exists subset \(S' \subset S \) such that \(|\bigcup_{s \in S'} A_s| < |S'| \)

Suppose \(|S'| = k \leq n \), we can number the elements of \(S' = \{s_1, s_2 \ldots s_k\} \).

Assume for sake of contradiction that there exist a matching between \(S \) and \(T \), then for \(1 \leq i \leq k \), there exist \(t_i \in T \) such that \((s_i, t_i) \in E \). By our definition of \(A_s \) we must have

\[
\{t_1, t_2 \ldots t_k\} \subset \bigcup_{i=1}^{k} A_{s_i} = \bigcup_{s \in S'} A_s
\]

But,

\[
k = |\{t_1, t_2 \ldots t_k\}| \leq \bigcup_{i=1}^{k} A_{s_i} = \bigcup_{s \in S'} A_s < |S'| = k
\]

Contradiction! Therefore there does not exist a matching between \(S \) and \(T \).

Question 4 (Extra credit, 1 point). **Free point!**