Math 184A Homework 7

Spring 2018

This homework is due on gradescope by Friday June 8th at 11:59pm. Remember to justify your work even if the problem does not explicitly say so. Writing your solutions in \LaTeX is recommended though not required.

Question 1 (Avoidance Bounds, 20 points). From the book we know that $S_n(1432) \leq 9^n$. Find a constant C so that $S_n(321456987) \leq C^n$ for all n.

Question 2 (Hill Avoidance, 40 points). Let a k-hill in a permutation be a subsequence of $2k-1$ of the entries the first k of which are in increasing order and the last k of which are in decreasing order. Note that a k-hill is not a single pattern. For example, a 2-hill is either an instance of the pattern 132 or an instance of the pattern 231.

(a) Show that the number of permutations of $[n]$ with no 2-hill is 2^{n-1}. [15 points]

(b) Show that the number of permutations of $[n]$ with no k-hill is at most $(4(k-1)^2)^n$. [Hint: try to find a decreasing sequence among elements that are the largest of a k-term increasing subsequence.] [25 points]

Question 3 (Marriage Lemma, 40 points). The Marriage Lemma states that if you are given two sets S and T of size n and a set E of pairs of one element of each set, then there is a matching between S and T (namely a set of n pairs from E using each element of S and each element of T exactly once) unless there is some subset $S' \subset S$ so that the total number of elements of T that pair with some element of S' is less than $|S'|$.

Prove the Marriage Lemma using Dilworth’s Theorem.

Question 4 (Extra credit, 1 point). Free point!