Math 184A Homework 2

Spring 2018

This homework is due on gradescope by Friday April 20th at 11:59pm. Remember to justify your work even if the problem does not explicitly say so. Writing your solutions in \LaTeX is recommend though not required.

Question 1 (Partition Recurrence, 15 points). We didn’t mention in class any method to compute partition numbers, but there is a relatively simple recurrence relation that can be used for them. Prove that for all \(n \geq k \geq 1 \) that

\[
p_k(n) = \sum_{i=0}^{k} p_i(n - k).
\]

Question 2 (Partitions with Sequential Part Sizes, 15 points). Show that the number of partitions of \(n \) into parts of distinct sizes is the same as the number of partitions of \(n \) so that the adjacent parts have sizes differing by at most 1 (so in particular \(a_i \geq a_{i+1} \geq a_i - 1 \)) and the smallest part has size 1.

Question 3 (Compositions and Fibonacci Numbers, 30 points).

(a) Show that the number of compositions of \(n \) into odd parts is the same as the number of compositions of \(n - 1 \) into parts of size 1 and 2 for all \(n \geq 1 \). [15 points]

(b) Define the Fibonacci numbers by the recurrence relation \(F_0 = F_1 = 1 \) and \(F_n = F_{n-1} + F_{n-2} \) for all \(n \geq 2 \). Show that the number of compositions of \(n \) into odd parts is \(F_n \) for all \(n \geq 0 \). [15 points]

Question 4 (Summation Polynomials, 40 points).

(a) Show that the number of compositions of \(n \) into \(k \) parts is the sum of \(m \) going from 0 to \(n - 1 \) of the number of compositions of \(m \) into \(k - 1 \) parts. [10 points]

(b) Show that for any \(n \) and \(k \) that

\[
\sum_{i=0}^{n} \binom{i}{k} = \binom{n+1}{k+1}.
\]

[10 points]

(c) Recall that

\[
x^m = \sum_{k=0}^{m} k! S(m, k) \binom{x}{k}.
\]

We would like to come up with a formula for

\[
\sum_{i=0}^{n} i^m = P_m(n).
\]

In particular, we claim that for each \(m \), we claim that \(P_m(n) \) is a polynomial in \(m \). For example,

\[
\sum_{i=0}^{n} i = \frac{n(n + 1)}{2},
\]

so \(P_2(n) = n(n + 1)/2 \). Using the above formula and the result in part (b), give a formula for \(P_m(n) \) in terms of Stirling numbers, and binomial coefficients. [20 points]
Question 5 (Extra credit, 1 point). Approximately how much time did you spend on this homework?