Math 184 Homework 1

Spring 2021

This homework is due on gradescope Friday April 9th at 11:59pm pacific time. Remember to justify your work even if the problem does not explicitly say so. Writing your solutions in \LaTeX is recommend though not required.

Question 1 (Differential Equation, 35 points). Show that for every positive integer m that there is a polynomial $P_m(x)$ satisfying the differential equation:

$$mP_m(x) = xP'_m(x) + P'_m(x) + P''_m(x).$$

Hint: Note that if $P(x) = x^m$ that $mP(x) - xP'(x) - P'(x) - P''(x) = -mx^{m-1} - m(m-1)x^{m-2}$. By adding an appropriate multiple of x^{m-1} to P, we can remove the x^{m-1} term, and then by adding lower degree terms, we can continue cleaning up the errors until they disappear entirely. You will likely need some kind of induction to formalize this argument.

Question 2 (King Packing, 30 points). The game of chess is played on an 8 by 8 square board. A king can move from a given square to any adjacent square vertically, horizontally or diagonally. What is the maximum number of kings that can be placed on a chess board without any two of them attacking each other (i.e. being able to move to the others’ square)?

Question 3 (Counting Permutations, 35 points). A permutation of the set $[10] = \{1, 2, 3, \ldots, 10\}$ is a way of listing the elements of $[10]$ in order so that each element appears exactly once. The following questions ask about counting the number of permutations of $[10]$ with certain properties. Remember to justify your answers.

(a) How many permutations of $[10]$ are there? [5 points]

(b) How many permutations of $[10]$ are there that put $1, 2, 3, 4, 5$ in the first five positions in some order? [5 points]

(c) We call a sequence unimodal if the elements of the sequence increase to some point, and then decrease from there on. So, for example $1, 2, 3, 4, 5, 10, 9, 8, 7, 6$ is unimodal. How many unimodal permutations of $[10]$ are there? [5 points]

(d) How many permutations of $[10]$ start with $k, k-1, k-2, \ldots, 1$ for some integer k? [5 points]

(e) How many permutations of $[10]$ have 1 appear earlier in the sequence than 10? [5 points]

(f) How many permutations of $[10]$ have all of the even numbers appearing in the first seven positions? [5 points]

(g) How many permutations of $[10]$ alternate even and odd numbers? [5 points]

Question 4 (Extra credit, 1 point). Approximately how much time did you spend working on this homework?