Announcements

• Homework 2 Due Sunday

• Students interested in problem solving practice should attend discussion sections.
Today

- Start Chapter 1.4
 - Introduction to Eulerian graphs.
Paths and Cycles (Ch 1.4)

• Eulerian Circuits
 – Definition
 – Classification of Eulerian graphs
 – Algorithms

• Hamiltonian cycles
 – Definition
 – Hardness
 – Some conditions
The Bridges of Konisberg

The city of Konisberg had 7 bridges as shown. People liked to go on walks touring the bridges. The mathematician Euler was asked if there was a tour that crossed each bridge exactly once.
Graph Theory

- Turn city into a (multi)graph.
 - Vertices = land areas
 - Edges = bridges

- Want: A walk that uses each edge exactly once.

Stuck!
Definitions

An *Eulerian circuit* is a circuit that uses every edge of a graph exactly once.

An *Eulerian trail* similarly uses each edge exactly once, but does not start and end at the same vertex.

A graph is *Eulerian* if it contains an Eulerian circuit and *semi-Eulerian* if it contains an Eulerian trail.
Question

The graph to the right is:
A) Eulerian
B) Semi-Eulerian
C) Neither
Questions we want to answer

• Which graphs are Eulerian / semi-Eulerian?
• How do we construct Eulerian circuits/trials?
Observation I

(semi-)Eulerian graphs must be connected!
(except for isolated vertices)

If there is no path from \(u \) to \(v \), certainly no Eulerian circuit/trail that connects both of them either.
Observation II

How does Eulerian circuit interact with vertex v?

Each time we take edge into v, then take different edge out of v.
Observation II

If G is Eulerian, $\deg(v)$ must be even!
Conclusion

So if G is Eulerian then it must:
• Be connected (except for isolated vertices)
• Have all vertices of even degree

Is this enough?

Yes!

Theorem (1.20): A finite, connected graph G is Eulerian if and only if all vertices have even degree.
Question: Eulerian Graphs

Which of these graphs are Eulerian?

A

B

C

D

E
Proof

• “Only if” already done.
 – If G has Eulerian circuit, each time the circuit passes through v it uses two of its edges.
 – Since Eulerian, eventually uses all of v’s edges
 – Therefore, deg(v) must be even.
 – This must hold for all vertices v.

• Need to prove that this is sufficient
 – Show how to construct an Eulerian circuit.
Constructing a Circuit I

As a first step, we will show you can construct a circuit.

Basic facts:

• Every degree is even
• Every non-isolated vertex has degree at least 2.
Constructing a Circuit II

- Start at any non-isolated vertex v.
- Construct a trail by adding new edges until you get stuck.
Claim: Can *only* get stuck at v.
Once you get stuck, you will have a circuit!

Proof:
• Suppose you got stuck at some other w.
• Each time you pass through w, use up 2 edges.
• Takes another edge to reach w. If at w used an odd number of edges.
• At least one left!
Constructing a Circuit IV
Are we done?

We have a circuit. Does it necessarily cover all the edges?

No.
How do we fix this?

Two ideas:

• Can find more circuits
• Glue circuits together
More Circuits

• Existing circuit uses an even number of edges at each vertex.
• Removing those edges, have an even number left at each vertex.
• Can create new circuit in remainder.
Combining Circuits

• Have two circuits that share a vertex.
• Turn them into one big circuit.
Final Algorithm

• Find a circuit.
• If all of $G \rightarrow$ done.
• Otherwise, find v on circuit with unused edge.
• Find additional circuit through v.
• Merge with existing circuit.
• Repeat
Analysis

• By connectivity, if circuit isn’t all of G, contains some vertex with an extra edge. (Otherwise your circuit would be a full connected component)

• Each step increases the number of edges in your circuit. Eventually, you must get all of G.