A Derandomized Sparse Johnson-Lindenstrauss Transform

Daniel M. Kane† Jelani Nelson‡

Abstract

Recent work of [Dasgupta-Kumar-Sarlós, STOC 2010] gave a sparse Johnson-Lindenstrauss transform and left as a main open question whether their construction could be efficiently derandomized. We answer their question affirmatively by giving an alternative proof of their result requiring only bounded independence hash functions. Furthermore, the sparsity bound obtained in our proof is improved. The main ingredient in our proof is a spectral moment bound that was recently used in [Diakonikolas-Kane-Nelson, FOCS 2010].

1 Introduction

The Johnson-Lindenstrauss lemma states the following.

Lemma 1 (JL Lemma [17]). For any integer $d > 0$, and any $0 < \varepsilon, \delta < 1/2$, there exists a probability distribution on $k \times d$ real matrices for $k = \Theta(\varepsilon^{-2} \log(1/\delta))$ such that for any $x \in \mathbb{R}^d$ with $\|x\|_2 = 1$,

$$\Pr_A[|\|Ax\|^2_2 - 1| > \varepsilon] < \delta.$$

Several proofs of the JL lemma exist in the literature [1, 7, 11, 14, 16, 17, 20], and it is known that the dependence on k is tight up to an $O(\log(1/\varepsilon))$ factor [5]. Though, these proofs of the JL lemma give a distribution over dense matrices, where each column has at least a constant fraction of its entries being non-zero, and thus na"ively performing the matrix-vector multiplication is costly. Recently, Dasgupta, Kumar, and Sarlós [10] proved the JL lemma where each matrix in the support of their distribution only has α non-zero entries per column, for $\alpha = \Theta(\varepsilon^{-1} \log(1/\delta) \log^2(k/\delta))$. This reduces the time to perform dimensionality reduction from the naïve $O(dk)$ to being $O(d\alpha)$.

The construction of [10] involved picking two random hash functions $h : [da] \rightarrow [k]$ and $\sigma : [da] \rightarrow \{-1, 1\}$, and thus required $\Omega(d\alpha \cdot \log k)$ bits of seed to represent a random matrix from their JL distribution. They then left two main open questions: (1) derandomize their construction to require fewer random bits to select a random JL matrix, for applications in e.g. streaming settings where storing a long random seed is prohibited, and (2) understand the dependence on δ that is required in α.

We give an alternative proof of the main result of [10] that yields progress for both (1) and (2) above simultaneously. Specifically, our proof yields a value of α that is improved by a $\log(k/\delta)$ factor. Furthermore, our proof only requires that h be r_h-wise independent and σ be r_σ-wise independent for $r_h = O(\log(k/\delta))$ and $r_\sigma = O(\log(1/\delta))$, and thus a random sparse JL matrix can be represented using only $O(\log(k/\delta) \log(d\alpha + k)) = O(\log(k/\delta) \log d)$ bits (note k can be assumed less than d, else the JL lemma is trivial, in which case also $\log(d\alpha) = O(\log d)$). We remark that [10]

1Harvard University, Department of Mathematics. dankane@math.harvard.edu.
2MIT Computer Science and Artificial Intelligence Laboratory. minilek@mit.edu.
asked exactly this question: whether the random hash functions used in their construction could be replaced by functions from bounded independence hash families. The proof in [10] required use of the FKG inequality [6, Theorem 6.2.1], and they suggested that one approach to a proof that bounded independence suffices might be to prove some form of this inequality under bounded independence. Our approach is completely different, and does not use the FKG inequality at all. Rather, the main ingredient in our proof is a spectral moment bound for quadratic forms recently used in [12].

We now give a formal statement of the main theorem of this work, which is a derandomized JL lemma where every matrix in the support of the distribution has good column sparsity.

Theorem 2 (Main Theorem). For any integer \(d > 0\), and any \(0 < \varepsilon, \delta < 1/2\), there exists a family \(\mathcal{A}\) of \(k \times d\) real matrices for \(k = \Theta(\varepsilon^{-2} \log(1/\delta))\) such that for any \(x \in \mathbb{R}^d\) with \(\|x\|_2 = 1\),

\[
\Pr_{A \in \mathcal{A}}[\|Ax\|_2^2 - 1 > \varepsilon] < \delta.
\]

Here \(|\mathcal{A}| = d^{O(\log(k/\delta))}\). Every matrix in \(\mathcal{A}\) has at most \(\alpha = \Theta(\varepsilon^{-1} \log(1/\delta) \log(k/\delta))\) non-zero entries per column. Given a string of length \(\log(|\mathcal{A}|)\) representing some matrix \(A \in \mathcal{A}\), together with a vector \(x \in \mathbb{R}^d\), the multiplication \(Ax\) can be performed in \(O(\alpha \cdot \|x\|_0 + t(\alpha \cdot \|x\|_0, O(\log(k/\delta)), d\alpha, k) + t(\alpha \cdot \|x\|_0, O(\log(1/\delta)), d\alpha, 2)\) time. Here \(t(s, r, n, m)\) is the total time required to evaluate a random hash function drawn from an \(r\)-wise independent family mapping \([n]\) into \([m]\) on \(s\) inputs, and \(\|x\|_0\) is the number of non-zero entries in \(x\). One can also preprocess the string in \(O(kd + t(\alpha d, O(\log(k/\delta)), d\alpha, k) + t(\alpha d, O(\log(1/\delta)), d\alpha, 2)\) time to write the matrix \(A\) explicitly to then calculate future products \(Ax\) in \(O(\alpha \cdot \|x\|_0)\) time.

2 Related Work

There have been two separate lines of related work: one line of work on constructing JL families\(^1\) such that the dimensionality reduction can be performed quickly, and another line of work on derandomizing the JL lemma so that a random matrix from some JL family can be selected using few random bits. We discuss both here.

2.1 Works on efficient JL embeddings

Here and throughout, for a JL family \(\mathcal{A}\) we use the term **embedding time** to refer to the running time required to perform a matrix-vector multiplication for an arbitrary \(A \in \mathcal{A}\). The first work to give a JL family with embedding time potentially better than \(O(dk)\) was in [2]. There, the authors achieved embedding time \(O(d \log d + k \log^2(1/\delta))\). Later, improvements were given by Ailon and Liberty in [3, 4]. The work of [3] achieves embedding time \(O(d \log k)\) when \(k = O(d^{1/2-\gamma})\) for an arbitrarily small constant \(\gamma > 0\), and [4] achieves embedding time \(O(d \log d)\) and no restriction on \(k\), though the \(k\) in their JL family is \(O(\varepsilon^{-4} \log(1/\delta) \log^4 d)\) as opposed to the \(O(\varepsilon^{-2} \log(1/\delta))\) bound of the standard JL lemma. Liberty, Ailon, and Singer [19] achieve embedding time \(O(d)\) when \(k = O(d^{1/2-\gamma})\), but their JL family only applies for \(x\) satisfying \(\|x\|_\infty \leq \|x\|_2 \cdot k^{-1/2} d^{-\gamma}\). None of these works however can take advantage of the situation when \(x\) is sparse to achieve faster embedding time.

\(^1\)In many known proofs of the JL lemma, the distribution over matrices in Lemma 1 is obtained by picking a matrix uniformly at random from some set \(\mathcal{A}\). In such a case, we call \(\mathcal{A}\) a **JL family**.
Other related works include [8] and [24]. Implicitly in [8], and later more explicitly in [24], a JL family was given with column sparsity 1 using only constant-wise independent hash functions. The construction was in fact the same as in [10], but with h being pairwise independent, and σ being 4-wise independent. This construction only gives a JL family for constant δ though, since with such mild independence assumptions on h, σ one needs k to be polynomially large in $1/\delta$.

2.2 Works on derandomizing the JL lemma

Karnin, Rabani, and Shpilka [18] recently gave a family where the distortion ε and failure probability δ are $1/k^C$ for some absolute constant $C > 0$ — note that in Lemma 1, the failure probability decays exponentially in $\varepsilon^2 k$. Other works giving derandomized JL lemmas are [12, 21], which give pseudorandom generators (PRGs) against degree-2 polynomial threshold functions (PTFs) over the hypercube. A degree-t PTF is a function $f: \{-1, 1\}^d \rightarrow \{-1, 1\}$ which can be represented as the sign of a degree-t d-variate polynomial. A PRG that δ-fools degree-t PTFs is a function $F: \{-1, 1\}^s \rightarrow \{-1, 1\}^d$ such that for any degree-t PTF f,

$$|E_{z \in \mathcal{U}^s}[f(F(z))] - E_{x \in \mathcal{U}^d}[f(x)]| < \delta,$$

where \mathcal{U}^m is the uniform distribution on $\{-1, 1\}^m$.

Note that the conclusion of the JL lemma can be rewritten as

$$E_A[I_{[1-\varepsilon, 1+\varepsilon]}(\|Ax\|_2^2)] \geq 1 - \delta,$$

where $I_{[a,b]}$ is the indicator function of the interval $[a,b]$, and furthermore A can be taken to have random $\pm 1/\sqrt{k}$ entries [1]. Noting that $I_{[a,b]}(z) = (\text{sign}(z - a) - \text{sign}(z - b))/2$ and using linearity of expectation, we see that any PRG which δ-fools $\text{sign}(p(x))$ for degree-t polynomials p must also δ-fool $I_{[a,b]}(p(x))$. Now, for fixed x, $\|Ax\|_2^2$ is a degree-2 polynomial over the boolean hypercube in the variables $A_{i,j}$ and thus a PRG which δ-fools degree-2 PTFs also gives a JL family with the same seed length. Each of [12, 21] thus give JL families with seed length $\text{poly}(1/\delta) \cdot \log d$.

The best known seed length for a JL family we are aware of is due to Clarkson and Woodruff [9]. Theorem 2.2 of [9] implies that a scaled random Bernoulli matrix with $\Omega(\log(1/\delta))$-wise independent entries satisfies the JL lemma, giving seed length $O(\log(1/\delta) \cdot \log d)$. It can be shown via the probabilistic method that there exist PRGs for degree-2 PTFs with seed length $O(\log(1/\delta) + \log d)$ (see Section B of the full version of [21] for a proof), and it remains an interesting open problem to achieve this seed length with an explicit construction. It is also not too hard to show that any JL family must have seed length $\Omega(\log(1/\delta) + \log(d/k))$.

Other derandomizations of the JL lemma include the works [13] and [22]. A common application of the JL lemma is the case where there are n vectors $x_1, \ldots, x_n \in \mathbb{R}^d$ and one wants to find a matrix $A \in \mathbb{R}^{k \times d}$ to preserve $\|x_i - x_j\|_2$ to within relative error ε for all i, j. In this case, one can set $\delta = 1/n^2$ and apply the JL lemma, then perform a union bound over all i, j pairs. The works of [13, 22] do not give JL families, but rather give deterministic algorithms for finding such a matrix A in the case that the vectors x_1, \ldots, x_n are known up front.

3 Conventions and Notation

Definition 3. For $A \in \mathbb{R}^{n \times n}$, we define the Frobenius norm of A as $\|A\|_F = \sqrt{\sum_{i,j} A_{i,j}^2}$.

Definition 4. For $A \in \mathbb{R}^{n \times n}$, we define the operator norm of A as
\[\|A\|_2 = \sup_{\|x\|_2 = 1} \|Ax\|_2. \]

In the case A has all real eigenvalues (e.g. it is symmetric), we also have that $\|A\|_2$ is the largest magnitude of an eigenvalue of A.

Throughout this paper, ε is the quantity given in Lemma 1, and is assumed to be smaller than some absolute constant $\varepsilon_0 > 0$. All logarithms are base-2 unless explicitly stated otherwise. Also, for a positive integer n we use $[n]$ to denote the set $\{1, \ldots, n\}$. All vectors are assumed to be column vectors, and v^T for a vector v denotes its transpose. Finally, we often implicitly assume that various quantities are powers of 2 (such as e.g. $1/\delta$), which is without loss of generality.

4 Warmup: A simple proof of the JL lemma

Before proving our main theorem, as a warmup we demonstrate how a simpler version of our approach reproves Achlioptas’ result [1] that the family of all (appropriately scaled) sign matrices is a JL family. Furthermore, as was already demonstrated in [9, Theorem 2.2], we show that rather than choosing a uniformly random sign matrix, the entries need only be $\Omega(\log 1/\delta)$-wise independent.

Before proceeding, we will need the following lemma, which gives a central moment bound for quadratic forms in terms of both the Frobenius and operator norms of the associated matrix, and was proven in [12, 15].

Lemma 5 ([12]3, [15]). Let $z = (z_1, \ldots, z_n)$ be a vector of i.i.d. Bernoulli ± 1 random variables. Then for any $B \in \mathbb{R}^{n \times n}$ and integer $\ell \geq 2$ a power of 2,
\[E\left[(z^T Bz - \text{trace}(B))^\ell \right] \leq 64^\ell \cdot \max \left\{ \sqrt{\ell} \cdot \|B\|_F, \ell \cdot \|B\|_2 \right\}^\ell. \]

Theorem 6. For $d > 0$ an integer and any $0 < \varepsilon, \delta < 1/2$, let A be a $k \times d$ random matrix with $\pm 1/\sqrt{k}$ entries that are r-wise independent for $k = \Omega(\varepsilon^{-2} \log(1/\delta))$ and $r = \Omega(\log(1/\delta))$. Then for any $x \in \mathbb{R}^d$ with $\|x\|_2 = 1$,
\[\Pr[A] \left[\|Ax\|_2^2 - 1 \right] > \varepsilon \leq \delta. \]

Proof. We have
\[\|Ax\|_2^2 = \frac{1}{k} \sum_{i=1}^{k} \left(\sum_{(s,t) \in [d] \times [d] \atop a_{s},a_{t}} x_s x_t \sigma_{i,s} \sigma_{i,t} \right), \]
where σ is a kd-dimensional vector formed by concatenating the rows of $\sqrt{k} \cdot A$. Define the matrix $T \in \mathbb{R}^{kd \times kd}$ to be the block-diagonal matrix where each block equals xx^T/k. Then, $\|Ax\|_2^2 = \sigma^T T \sigma$. Furthermore, $\text{trace}(T) = \|x\|_2^2 = 1$. Thus, we would like to argue that $\sigma^T T \sigma$ is concentrated about $\text{trace}(T)$, for which we can use Lemma 5. Specifically, if $\ell \geq 2$ is even,
\[\Pr[\|Ax\|_2^2 - 1 > \varepsilon] = \Pr[\|\sigma^T T \sigma - \text{trace}(T)\| > \varepsilon] < \varepsilon^{-\ell} \cdot E[(\sigma^T T \sigma - \text{trace}(T))^\ell]. \]
by Markov’s inequality. To apply Lemma 5, we also pick \(\ell \) a power of 2, and we ensure \(2\ell \leq r \) so that the \(\ell \)th moment of \(\sigma^T T \sigma - \text{trace}(T) \) is determined by \(r \)-wise independence of the \(\sigma \) entries. We also must bound \(\|T\|_F \) and \(\|T\|_2 \). Direct computation gives \(\|T\|_2^2 = (1/k) \cdot \|x\|_2^4 = 1/k \). Also, \(x \) is the only eigenvector of \(xx^T/k \) with non-zero eigenvalue, and furthermore its eigenvalue is \(\|x\|_2^2/k = 1/k \), and thus \(\|T\|_2 = 1/k \). Therefore,

\[
\Pr[\|Ax\|_2^2 - 1 > \varepsilon] < 64^\ell \cdot \max \left\{ \varepsilon^{-1} \sqrt{\frac{\ell}{k}}, \varepsilon^{-1} \frac{\ell}{k} \right\}^\ell,
\]

which is at most \(\delta \) for \(\ell = \log(1/\delta) \) and \(k \geq 4 \cdot 64^2 \cdot \varepsilon^{-2} \log(1/\delta) \).

\[\square\]

Remark 7. The conclusion of Lemma 5 holds even if the \(z_i \) are standard normal random variables, and thus the above proof of Theorem 6 carries over unchanged to show that \(A \) could instead have \(\Omega(\log(1/\delta)) \)-wise independent standard normal entries.

5 Proof of Main Theorem

We recall the sparse JL transform construction of [10] (though the settings of some of our constants differ). Let \(k = 28 \cdot 64^2 \cdot \varepsilon^{-2} \log(1/\delta) \). Pick random hash functions \(h : [d] \to [k] \) and \(\sigma : [d] \to \{-1, 1\} \). Let \(\delta_{i,j} \) be the indicator random variable for the event \(h(i) = j \). Define the matrix \(A \in \{-1, 0, 1\}^{k \times d} \) by \(A_{i,j} = \delta_{i,j} \cdot \sigma(j) \). The work of [10] showed that as long as \(x \in \mathbb{R}^d \) satisfies \(\|x\|_2 = 1 \) and has bounded \(\|x\|_\infty \), then \(\Pr_{h,\sigma}[\|Ax\|_2^2 - 1 > \varepsilon] < O(\delta) \). We show the same conclusion without the assumption that \(h, \sigma \) are perfectly random; in particular, we show that \(h \) need only be \(r_h \)-wise independent and \(\sigma \) need only be \(r_\sigma \)-wise independent for \(r_h = O(\log(k/\delta)) \) and \(r_\sigma = O(\log(1/\delta)) \). Furthermore, our assumption on the bound for \(\|x\|_\infty \) is \(\|x\|_\infty \leq c \) for \(c = \Theta(\sqrt{\varepsilon}/(\log(1/\delta) \cdot \log(k/\delta))) \), whereas [10] required \(c = \Theta(\sqrt{\varepsilon}/(\log(1/\delta) \cdot \log^2(k/\delta))) \). This is relevant since the column sparsity obtained in the final JL transform construction of [10] is \(1/c^2 \). This is because, to apply the dimensionality reduction of [10] to an arbitrary \(x \) of unit \(\ell_2 \) norm (which might have \(\|x\|_\infty \gg c \)), one should first map \(x \) to a vector \(\tilde{x} \) by a \((d/c^2) \times d \) matrix \(Q \) with \(Q_{i_1r_i + i_2, i_1 + 1} = c \) and other entries 0 for \(i_1 \in \{0, \ldots, d - 1\}, i_2 \in [1/c^2] \). Then \(\|\tilde{x}\|_2 = 1 \) and \(\|\tilde{x}\|_\infty \leq c \), and thus the set of products with \(Q \) of JL matrices in the distribution of [10] over dimension \(d/c^2 \) serves as a JL family for arbitrary unit vectors. Thus, the sparsity obtained by our proof in the final JL construction is improved by a \(\Theta(\log(k/\delta)) \) factor.

Before proving our main theorem, first we note that

\[
\|Ax\|_2^2 = \|x\|_2^2 + 2 \sum_{(s,t) \in \binom{[d]}{2}} \left(\sum_{j=1}^k \delta_{s,j} \delta_{t,j} x_s x_t \right) \sigma(s) \sigma(t).
\]

We would like that \(\|Ax\|_2^2 \) is concentrated about 1, or rather, that

\[
Z = 2 \sum_{s < t} \left(\sum_{j=1}^k \delta_{s,j} \delta_{t,j} x_s x_t \right) \sigma(s) \sigma(t)
\]

is concentrated about 0, or rather, that

\[
\Pr(Z < 64 \cdot \varepsilon) \leq \delta.
\]

\[\Box\]

\[\begin{align*}
4 & \text{Though our constant factor for } k \text{ is quite large, most likely the 64 could be made much smaller by tightening the analysis of constants in [12].}
\end{align*}\]
is concentrated about 0. Let \(\eta_{s,t} \) be the indicator random variable for the event \(s \neq t \) and \(h(s) = h(t) \). Then for fixed \(h \), \(Z \) is a quadratic form in the \(\sigma(i) \) which can be written as \(\sigma^T T \sigma \) for a \(d \times d \) matrix \(T \) with \(T_{h,s} = x_s x_t \eta_{s,t} \) (we here and henceforth slightly abuse notation by sometimes using \(\sigma \) to also denote the \(d \)-dimensional vector whose \(i \)th entry is \(\sigma(i) \)).

Our main theorem follows by applying Lemma 5 to \(\sigma^T T \sigma \), as in the proof of Theorem 6 in Section 4, to show that \(Z \) is concentrated about trace(\(T \)) = 0. However, unlike in Section 4, our matrix \(T \) is not a fixed matrix, but rather is random; it depends on the random choice of \(h \). We handle this issue by using the two lemmas below, which state that both \(\| T \|_F \) and \(\| T \|_2 \) are small with high probability over the random choice of \(h \). We then obtain our main theorem by first conditioning on this high probability event before applying Lemma 5. The lemmas are proven in Section 6 and Section 7.

Henceforth in this paper, we assume \(\| x \|_2 = 1 \), \(\| x \|_\infty \leq c \), and \(T \) is the matrix described above.

Lemma 8. \(\Pr[h][\| T \|_2^2 > 7/k] < \delta. \)

Lemma 9. \(\Pr[h][\| T \|_2 > \varepsilon/(128 \cdot \log(1/\delta))] < \delta. \)

The following theorem now implies our main theorem (Theorem 2).

Theorem 10.

\[
\Pr[h, \sigma][|Ax|_2^2 - 1 > \varepsilon] < 3\delta.
\]

Proof. Write

\[
\|Ax\|_2^2 = \|x\|_2^2 + 2 \sum_{(s,t) \in \binom{[d]}{2}} x_s x_t \eta_{s,t} \sigma(s) \sigma(t)
\]

\[= 1 + Z. \]

We will show \(\Pr[h, \sigma][|Z| > \varepsilon] < 3\delta. \) Condition on \(h \), and let \(\mathcal{E} \) be the event that \(\| T \|_F^2 \leq 7/k \) and \(\| T \|_2 \leq \varepsilon/\log(1/\delta) \). By applications of Lemma 8 and Lemma 9 and a union bound,

\[
\Pr[h, \sigma][|Z| > \varepsilon] < \Pr[\sigma][|Z| > \varepsilon | \mathcal{E}] + 2\delta.
\]

By a Markov bound applied to the random variable \(Z^\ell \) for \(\ell \) an even integer,

\[
\Pr[\sigma][|Z| > \varepsilon | \mathcal{E}] < E_\sigma[Z^\ell | \mathcal{E}]/\varepsilon^\ell.
\]

Since \(Z = \sigma^T T \sigma \) and trace(\(T \)) = 0, applying Lemma 5 with \(B = T \) and \(2\ell \leq r_\sigma \) gives

\[
\Pr[\sigma][|Z| > \varepsilon | \mathcal{E}] < 64^\ell \cdot \max \left\{ \varepsilon^{-1} \sqrt{\frac{7\ell}{k}}, \frac{\ell}{128 \cdot \log(1/\delta)} \right\}^\ell.
\]

(3)

since the \(\ell \)th moment is determined by \(r_\sigma \)-wise independence of \(\sigma \). We conclude the proof by noting that the expression in Eq. (3) is at most \(\delta \) for \(\ell = \log(1/\delta) \).
6 A high probability bound on $\|T\|_F$

In this section we prove Lemma 8.

Proof (of Lemma 8). Recall that for $s, t \in [d]$, $\eta_{s, t}$ is the random variable indicating that $s \neq t$ and $h(s) = h(t)$. Then, Eq. (2) implies that $\|T\|_F^2 = 2\sum_{s \neq t} x_s^2 x_t^2 \eta_{s, t}$. Note $\|T\|_F^2$ is a random variable depending only on h. The plan of our proof is to directly bound the ℓth moment of $\|T\|_F^2$, for some large ℓ (specifically, $\ell = \Theta(\log(1/\delta))$), then conclude by applying Markov’s inequality to the random variable $\|T\|_F^2$. We bound the ℓth moment of $\|T\|_F^2$ via some combinatorics.

We now give the details of our proof. Consider the expansion $(\|T\|_F^2)^\ell$. We have

$$((\|T\|_F^2)^\ell) = 2^\ell \cdot \sum_{s_1, \ldots, s_\ell, t_1, \ldots, t_\ell} \prod_{i=1}^\ell x_{s_i}^2 x_{t_i}^2 \eta_{s_i, t_i}$$

(4)

Let G_ℓ be the set of all isomorphism classes of graphs (possibly containing multi-edges) with between 2 and 2ℓ unlabeled vertices, minimum degree at least 1, and exactly ℓ edges with distinct labels in $[\ell]$. We now define a map $f : \{\binom{[d]}{2}\}^\ell \rightarrow G_\ell$; i.e. f maps the monomials in Eq. (4) to elements of G_ℓ. Focus on one monomial in Eq. (4) and let $S = \{s_1, \ldots, s_\ell, t_1, \ldots, t_\ell\}$. We map the monomial to an $|S|$-vertex element of G_ℓ as follows: associate each $u \in S$ with a vertex, and for each s_i, t_i, draw an edge from the vertices associated with s_i, t_i using edge label i.

We now analyze the expectation of the summation in Eq. (4) by grouping monomials which map to the same elements of G_ℓ under f.

$$\mathbb{E}_h \left[(\|T\|_F^2)^\ell \right] = 2^\ell \cdot \sum_{G \in G_\ell} \sum_{\{(s_i, t_i)\} \in \binom{[d]}{2}\}^\ell \left(\prod_{i=1}^\ell x_{s_i}^2 x_{t_i}^2 \right) \cdot \mathbb{E}_h \left[\prod_{i=1}^\ell \eta_{s_i, t_i} \right].$$

(5)

Observe that $\prod_{i=1}^\ell \eta_{s_i, t_i}$ is determined by $h(s_i), h(t_i)$ for each $i \in [\ell]$, and hence its expectation is determined by 2ℓ-wise independence of h. Note that this product is 1 if s_i and t_i hash to the same element for each i and is 0 otherwise. Each s_i, t_i pair hash to the same element if and only if for each connected component of G, all elements of $S = \{s_1, \ldots, s_\ell, t_1, \ldots, t_\ell\}$ corresponding to vertices in that component hash to the same value. For the v_G elements we are concerned with, where $v_G = |S|$ is the number of vertices in G, we can choose one element of $[k]$ for each connected component. Hence the number of possible values of h on S that cause $\prod_{i=1}^\ell \eta_{s_i, t_i}$ to be 1 is k^{v_G}, where G has m_G connected components. Each possibility happens with probability k^{-v_G}. Hence

$$\mathbb{E}_h [\prod_{i=1}^\ell \eta_{s_i, t_i}] = k^{m_G - v_G}.$$

Also, consider the term $\prod_{i=1}^{v_G} x_{r_i}^2 = \prod_{i=1}^{v_G} x_{r_i}^{2\ell_i}$, where $S = \{r_i\}^{v_G}$ is at least 1, and $\sum_i \ell_i = 2\ell$ (ℓ_i is just the degree of the vertex associated with r_i in G). Then,

$$\prod_{i=1}^{v_G} x_{r_i}^{2\ell_i} = \left(\prod_{i=1}^{v_G} x_{r_i}^{2(\ell_i - 1)} \right) \cdot \left(\prod_{i=1}^{v_G} x_{r_i}^2 \right) \leq \left(\prod_{i=1}^{v_G} x_{r_i}^{2(\ell_i - 1)} \right) \cdot \left(\prod_{i=1}^{v_G} x_{r_i}^{2\ell_i} \right) \leq e^{2(\ell - v_G)} \cdot \left(\prod_{i=1}^{v_G} x_{r_i}^2 \right)$$

Note then that the monomials $(\prod_{i=1}^{v_G} x_{r_i}^2)$ that arise from the summation over $\{(s_i, t_i)\} \in \binom{[d]}{2}$ with $f(\{(s_i, t_i)\}) = G$ in Eq. (5) are a subset of those monomials which appear in the expansion of
$(\sum_{i=1}^{d} x_i^2)^{\nu_G} = 1$. Thus, plugging back into Eq. (5),

$$\mathbb{E}_h \left[(\|T\|_F^2)^\ell \right] \leq 2^\ell \cdot \sum_{G \in \mathcal{G}_\ell} \frac{c^{2(2\ell - \nu_G)}}{k^{\nu_G - m_G}}. \quad (6)$$

Note the value ℓ in the $c^{2(2\ell - \nu_G)}$ term just arose as e_G, the number of edges in G. We bound the above summation by considering all ways to form an element of \mathcal{G}_ℓ by adding one edge at a time, starting from the empty graph G_0 with zero vertices and edges. In fact we will overcount some $G \in \mathcal{G}_\ell$, but this is acceptable since we only want an upper bound on Eq. (6).

Define $F(G) = c^{2(2e_G - \nu_G)} / k^{\nu_G - m_G}$. Initially we have $F(G_0) = 1$. We will add ℓ edges in order by label, from label 1 to ℓ. For the ith edge we have three options to form G_i from G_{i-1}: (a) we can add the edge between two existing vertices in G_{i-1}, (b) we can add two new vertices to G_{i-1} and place the edge between them, or (c) we can create one new vertex and connect it to an already-existing vertex of G_{i-1}. For each of these three options, we will argue that $n_i \cdot F(G_i) / F(G_{i-1}) \leq 1/k$, where n_i is the number of ways to perform the operation we chose at step i. This implies that the right hand side of Eq. (6) is at most $(6/k)^\ell$ since at each step of forming an element of \mathcal{G}_ℓ we have three options for how to form G_i from G_{i-1}.

Let e be the number of edges, v the number of vertices, and m the number of connected components for some G_{i-1}. In option (a), v remains constant, e increases by 1, and m either remains constant or decreases by 1. In any case, $F(G_i) / F(G_{i-1}) \leq c^4$, and $n_i < 2e^2$; the latter is because we have $\binom{v}{2} < 2e^2$ choices of vertices to connect. In option (b), $n_i = 1$, v increases by 2, e increases by 1, and m increases by 1, implying $n_i \cdot F(G_i) / F(G_{i-1}) = 1/k$. Finally, in option (c), $n_i = v \leq 2\ell$, v increases by 1, e increases by 1, and m remains constant, implying $n_i \cdot F(G_i) / F(G_{i-1}) \leq 2\ell e^2 / k$. Thus, regardless of which of the three options we choose, $n_i \cdot F(G_i) / F(G_{i-1}) \leq \max\{2e^2 c^4, 1/k, 2e^2 / k\}$, which is $1/k$ for $\ell = O(\log(1/\delta))$.

As discussed above, when combined with Eq. (6) this gives $\mathbb{E}_h[\|\|T\|_F^2\|^\ell] \leq (6/k)^\ell$. Then, by Markov’s inequality on the random variable $\|\|T\|_F^2\|^\ell$ for $\ell \geq 2$ and even, and assuming $2\ell \leq r_h$,

$$\Pr_h[\|\|T\|_F^2\|^\ell > (k/7)^\ell \cdot \mathbb{E}_h[\|\|T\|_F^2\|^\ell]] \leq (6/7)^\ell,$$

which is at most δ for $\ell = \Theta(\log(1/\delta))$. \qed

7 A high probability bound on $\|T\|_2$

In this section we prove Lemma 9. For each $j \in [k]$ we use α_j to denote $\sum_{i \in [d]} x_i^2$.

Lemma 11. $\|T\|_2 \leq \max\{c^2, \max_{j \in [k]} \alpha_j\}$.

Proof. Define the diagonal matrix R with $R_{i,i} = x_i^2$, and put $S = T + R$. For each $j \in [k]$, consider the vector v_j whose support is $h^{-1}(j)$, with $(v_j)_i = x_i$ for each i in its support. Then $S = \sum_{j=1}^{k} v_j \cdot v_j^T$. Thus $\text{rank}(S)$ is equal to the number of non-zero v_j, since they are clearly linearly independent (they have disjoint support and are thus orthogonal) and span the image of S. Furthermore, these non-zero v_j are eigenvectors of S since $S v_j = \alpha_j v_j$, and are the only eigenvectors of S with non-zero eigenvalue since if u is perpendicular to all such v_j then $A u = 0$. \hfill \blacksquare
Now, \(\|T\|_2 = \sup_{\|x\|_2 = 1} |x^T Tx| = \sup_{\|x\|_2 = 1} |x^T S x - x^T R x| \). Since \(S, R \) are both positive semidefinite, we then have \(\|T\|_2 \leq \max\{\|S\|_2, \|R\|_2\} \). \(\|R\|_2 \) is clearly \(\|x\|_\infty^2 \leq c^2 \), and we saw above that \(\|S\|_2 = \max_{j \in [k]} \alpha_j \).

We need the following standard facts.

Fact 12. The Gaussian distribution \(\mathcal{N}(\mu, \sigma^2) \) with mean \(\mu \) and variance \(\sigma^2 \) has density

\[
f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}},
\]

and for \(X \sim \mathcal{N}(\mu, \sigma^2) \) and \(\ell \geq 1 \) an integer,

\[
E[|X - \mu|^\ell] = \sigma^\ell \cdot (\ell - 1)!! \cdot \begin{cases} \sqrt{2/\pi}, & \text{for } \ell \text{ odd} \\ 1, & \text{for } \ell \text{ even} \end{cases}
\]

where \((2r)!! = r! \cdot 2^r\) and \((2r - 1)!! = (2r)!/(r! \cdot 2^r)\) for \(r \geq 1 \).

Fact 13. For \(\ell, \theta > 0 \), the function

\[
f(x) = x^{\ell-1} \cdot \frac{e^{-x/\theta}}{\theta^\ell \cdot \Gamma(\ell)}
\]

is a probability density on \(\mathbb{R}^+ \) (the Gamma distribution \(\Gamma(\ell, \theta) \)). In particular, \(\int_0^\infty f(x) = 1 \).

We also make use of the following lemma in order to convert tail bounds for a probability distribution into moment bounds.

Lemma 14. Let \(D \) be a distribution on \([0, \infty)\) with density function \(f \) and cumulative distribution function \(\Phi \). Let \(\ell \geq 1 \) be such that for \(X \sim D \), \(E[X^\ell] \) is finite and \(\lim_{x \to \infty} x^\ell \cdot (1 - \Phi(x)) = 0 \). Then

\[
E[X^\ell] = \ell \cdot \int_0^\infty x^{\ell-1} (1 - \Phi(x)) dx = \ell \cdot \int_0^\infty x^{\ell-1} \cdot \Pr_{X \sim D}[X \geq x] dx.
\]

Proof. Note \(-f\) is the derivative of \(1 - \Phi\) so that, by integration by parts,

\[
E[X^\ell] = - \left(\int_0^\infty x^\ell (-f(x)) dx \right) = - [x^\ell \cdot (1 - \Phi(x))]_0^\infty + \ell \cdot \int_0^\infty x^{\ell-1} \cdot (1 - \Phi(x)) dx.
\]

The tail bound we will convert into a moment bound via Lemma 14 is the following.

Theorem 15 ([23, Theorem 2]). Let \(X_1, \ldots, X_n \) be independent scalar random variables with \(|X_i| \leq K \) almost surely, with mean \(\mu_i \) and variance \(\sigma_i^2 \). Then for any \(\lambda > 0 \), one has

\[
\Pr \left[\left| \sum_{i=1}^n X_i - \mu \right| > \lambda \sigma \right] < C_1 \cdot \max \{ \exp(-C_2 \lambda^2), \exp(-C_2 \lambda \sigma / K) \}.
\]

for some absolute constants \(C_1, C_2 > 0 \), where \(\mu = \sum_{i=1}^n \mu_i \) and \(\sigma^2 = \sum_{i=1}^n \sigma_i^2 \).
Corollary 16. Let \(X_1, \ldots, X_n, K, \mu, \sigma^2 \) be as in Theorem 15, but where the \(X_i \) are only \(\ell \)-wise independent for some even integer \(\ell \geq 2 \). Then

\[
\Pr \left[\left| \sum_{i=1}^{n} X_i - \mu \right| > \lambda \right] < 2^{O(\ell)} \cdot \left(\left(\sigma \sqrt{\ell}/\lambda \right)^{\ell} + (K \ell/\lambda)^{\ell} \right).
\]

Proof. Applying Lemma 14 and using that the \(\ell \)th moment of \((\sum_{i=1}^{n} X_i - \mu) \) is determined by \(\ell \)-wise independence,

\[
E \left[\left(\sum_{i=1}^{n} X_i - \mu \right)^{\ell} \right] < C_1 \ell \cdot \int_0^{\infty} x^{\ell-1} \cdot \max \left\{ e^{-C_2 \frac{x^2}{\sigma^2}}, e^{-C_2 \frac{x^2}{\pi}} \right\} dx
\]

\[
\leq C_1 \ell \cdot \left(\int_0^{1/k} x^{\ell-1} \cdot e^{-C_2 \frac{x^2}{\sigma^2}} dx + \int_{1/k}^{\infty} x^{\ell-1} \cdot e^{-C_2 \frac{x^2}{\pi}} dx \right)
\]

\[
\leq C_1 \ell \cdot \left(\int_{-\infty}^{\infty} |x|^{\ell-1} \cdot e^{-C_2 \frac{x^2}{\sigma^2}} dx + \int_{-\infty}^{\infty} x^{\ell-1} \cdot e^{-C_2 \frac{x^2}{\pi}} dx \right)
\]

\[
= C_1 \ell \cdot \left(\sqrt{2\pi} \cdot (\ell - 2)! \cdot \left(\frac{\sigma^2 \cdot e^\pi}{2C_2} \right)^{\ell/2} + (\ell - 1)! \cdot \left(\frac{1}{2C_2} \right)^{\ell/2} \right)
\]

(7)

with the last equality using Fact 12 and Fact 13, and by approximating the factorials above via Stirling’s formula (namely, \(\ell! = \ell^{\ell/2} e^{\ell/2} \cdot O(1) \)).

The corollary then follows by Markov’s inequality on the random variable \((\sum_{i=1}^{n} X_i - \mu)^{\ell} \), since

\[
\Pr \left[\left| \sum_{i=1}^{n} X_i - \mu \right| > \lambda \right] < \lambda^{-\ell} \cdot E \left[\left(\sum_{i=1}^{n} X_i - \mu \right)^{\ell} \right]
\]

■

Proof (of Lemma 9). Fix some \(j \in [k] \). We have \(\alpha_j = \sum_{i=1}^{n} x_i^2 \delta_{i,j} \). Letting \(X_i = x_i^2 \delta_{i,j} \), in the notation of Corollary 16 we have \(\mu = ||x||_2^2/k = 1/k \) and \(\sigma^2 = E_h[X_2] = x_i^4/k \) so that \(\sigma^2 = \sum_{i=1}^{n} x_i^4/k \leq ||x||_\infty^2 \cdot ||x||_2^2/k \leq c^2/k \). Furthermore, each \(X_i \) is never larger than \(c^2 \), and the \(X_i \) are \(\ell \)-wise independent for \(\ell \leq r_h \). Thus, Corollary 16 gives

\[
\Pr_h \left[\alpha_j - \frac{1}{k} > \lambda \right] < 2^{O(\ell)} \cdot \left[\left(\frac{c \sqrt{\ell}}{\lambda \sqrt{k}} \right)^{\ell} + \left(\frac{c^2 \ell}{\lambda} \right)^{\ell} \right]
\]

(8)

For \(r_h = \Omega(\log(k/\delta)) \), we can set \(\ell = \Omega(\log(k/\delta)) \) and \(\lambda = \frac{\varepsilon}{256 \cdot \log(1/\delta)} \) in Eq. (8) to obtain

\[
\Pr_h \left[\alpha_j - \frac{1}{k} > \lambda \right] < \frac{c}{k}
\]

as long as \(c \) is a sufficiently small constant times \(\sqrt{\varepsilon/(\ell \cdot \log(1/\delta))} \). Then by a union bound over each \(j \), we have \(\Pr_h[\max_j \alpha_j > 1/k + \lambda > \varepsilon/(128 \cdot \log(1/\delta))] < \delta \). Our lemma then follows by applying Lemma 11, and using the fact that \(c^2 < \varepsilon/(128 \cdot \log(1/\delta)) \) for \(\varepsilon < \varepsilon_0 \). ■
Acknowledgments

This work was done while both authors were interns at Microsoft Research New England in Summer 2010. We thank Venkatesan Guruswami for showing us [23], which was very helpful.

References

