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Abstract

We setup the framework of Information theory and use it to prove lower bounds on
the number of samples needed to learn an arbitrary distribution p on [n]

1 Information Theory

Consider a random variable p. How much information does p encode ?

Motivation: If told that that p = x what is the ”surprisingness” of this event. We expect
it to be dependent on 1

Pr(p=x)
, since the more likely it is the less surprising it is. Also if we

are told about two independent events we expect the ”surprisingness” to be additive rather
than multiplicative thus we take the logarithm to get log 1

Pr(p=x)
. The mathematical notion

that captures the average ”surprisingness” is the Shannon Entropy.

Shannon Entropy:

H(p) =
∑
x

Pr(p = x) log
1

Pr(p = x)

Lets look at few examples:

• p is uniform on [n]

H(p) =
n∑
i=1

1

n
log n = log n

• p weighted coin. Probability (q, q′)

H(p) = q log
1

q
+ q′ log

1

q′
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Note. p is supported on [n]. Then

0 ≤ H(p) ≤ log n.

with equality iff p is uniform.

Intuition: The context in which entropy was defined is - Given n iid instances
X1, X2, . . . , Xn of X the number of bits that need to be communicated to convey these is
equal to nH(X). However we do not need this interpretation in the course.

Complicated random variables can be constructed from simple random variables. For
instance we can look at a pair of random variables as a new random variable. Then the
entropy would be

H(p, q) =
∑
x,y

Pr(p = x, q = y) log
1

Pr(p = x, q = y)
.

If p, q are independent,

H(p, q) =
∑
x,y

pxqy log
1

pxqy
=
∑
x,y

pxqy log
1

px
+
∑
x,y

pxqy log
1

qy
= H(p) +H(q)

Relative Entropy H(p|q) captures how much entropy does p have if one already knows
q.

H(p|q) = Eq=y[H(p|q = y)]

=
∑
y

qy
∑
x

Pr(p = x, q = y)

qy
log

qy
Pr(p = x, q = y)

=
∑
x,y

Pr(p = x, q = y) log
1

Pr(p = x, q = y)
−
∑
x,y

Pr(p = x, q = y) log
1

qy

= H(p, q)−H(q) ≥ 0

Its the total information learned from p and q minus the information learned from q.

Entropy satisfies the Chain rule. Given one bit at a time how much information do we
learn.

H(p1, p2, . . . , pn) = H(p1) +H(p2|p1) +H(p3|p1, p2) + . . .

These notions would be useful because we would like to determine how much information
do the samples say about the underlying distribution. We define mutual information I(p; q)
How much information does q tell us about p.

I(p; q) = H(p)−H(p|q) = H(p) +H(q)−H(p, q)

Lets look at few examples:
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• Random element of Fn2 .
p gives the coordinates in positions in S,
q gives the coordinates in positions in T ,

H(p) = |S|, H(q) = |T |, H(p, q) = |S ∪ T |
I(p; q) = |S|+ |T | − |S ∪ T | = |S ∩ T |

• p, q are individually fair but correlated coins, p = q with probability x.

H(q) = log 2 = 1, H(q|p) = x log(
1

x
) + (1− x) log(

1

1− x
).

I(p; q) = 1− x log(
1

x
) + (1− x) log(

1

1− x
)

Note that I(p; q) ≥ 0 with equality iff x = 1/2. If x = 0 or x = 1 then I(p; q) = 1.
If x = 1

2
+ ε then Taylor expanding we have I(p; q) = Θ(ε2). This makes sense because

think if we are given all the tosses of p and now we are given tosses of q one by one then
this equivalent to learning the bias of a coin that is being tossed(heads corresponds to
p = q) then we need 1

ε2
samples to learn it.

Mutual information is always non negative.

Lemma 1.1.
I(p; q) ≥ 0.

Proof.
I(p; q) = H(p)−H(p|q)

= H(E[p|q])− E[H(p|q)] ≥ 0( H is a concave function)

Relative shared information: This is the expected shared information between p and q
when you know R and thus positive.

I(p; q|R) = H(p|R) +H(q|R)−H(p, q|R)

Now we could get a chain rule for mutual information. The information in p about q and R
is equal to the information about p in R and the extra information in q about p knowing R.

I(p; q, R) = I(p;R) + I(p; q|R)

Information Processing Inequality:

Lemma 1.2. I(p; q) ≥ I(f(p); q)
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Proof.
I(p; q) = I(p, f(p); q)

= I(f(p); q) +

≥0︷ ︸︸ ︷
I(p; q|f(p))

≥ I(f(p); q)

2 Lower bounds:

Now we use this machinery to prove lower bounds. We use the adversarial method where in
we see it as a game between Nature and the Algorithm. Nature comes up with a distribution
D over all possible p, the algorithm gets N samples from a random p ∈ D and tries to come
up with a distribution that is close to p.

So we want to come up with a distribution D on the set of possible distributions on [n].
Essentially we want to pick a collection of distributions p on [n]. We don’t want all the

elements of our collection to be close together because then the algorithm could just output
one p that is close to all the elements in the collection no matter what the samples are. Also
we don’t want all the elements in the collection to be far apart because then the algorithm
could easily differentiate the distributions.

Also in the upper bound we bounded |p− q|1 by |p− q|2 using Cauchy Schwarz. We sort
of want |p− q|1 to be as large as possible so for equality in Cauchy Schwarz we need |pi− qi|
to be equal for all i. Thus we choose the collection to be around the uniform distribution
but at ε distance away so that we are not too clustered or too far away.

D Our collection is made up of distribution over 2n bins. The probabilities of ith bin in
every distribution in our collection is pi = 1

2n
± 5ε

2n
, but we need all the pi’s to sum to 1

so we pick (p2i−1, p2i) is randomly (1+5ε
2n
, 1−5ε

2n
) or (1−5ε

2n
, 1+5ε

2n
), this gives us a collection of

distributions that are 5ε away from the uniform distribution. Now Distribution D picks one
element of this collection uniformly at random. Note that this also specifies a distribution
on all possible p where we never pick a distribution outside our collection.

Now suppose a p ∼ D is picked and the algorithm is given N independent sam-
ples X1, . . . , XN from p. The algorithm processes these samples and comes up with
f(X1, . . . , XN) = q such that dTV (p, q) < ε with probability at least 2/3.

Now define q′ to be the closest distribution in Supp(D) to q.

Lemma 2.1.
dTV (p, q′) ≤ 2ε

Proof. Consider the indices (2i − 1, 2i). Now if (q′2i−1, q
′
2i) = (p2i−1, p2i), then we are done.

So let (q′2i−1, q
′
2i) = (p2i, p2i−1). But note that (q′2i−1, q

′
2i) is the closest rounding of (q2i−1, q2i)

among the two possibilities (p2i−1, p2i) and (p2i, p2i−1), so it should be the case that |q2i−1 −
q′2i−1| + |q2i − q′2i| < |q2i−1 − p2i−1| + |q2i − p2i|. Thus |q′2i−1 − p2i−1| + |q′2i − p2i| ≤ |q′2i−1 −
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q2i−1| + |q′2i − q2i| + |q2i−1 − p2i−1| + |q2i − p2i| < 2(|q2i−1 − p2i−1| + |q2i − p2i|). This when
summed over all i ∈ [n] proves the lemma.

But now that both p, q′ both lie in the Supp(D) we have

dTV (p, q′) =
10ε

n
[ no of pairs of bins q’ is wrong on ].

but since dTV (p, q′) < 2ε, q′ will agree with p on all but at most n/5 pairs of bins. Note
that q′ is a deterministic function (say g) of the samples X1, . . . , XN (denote this by XN

1 ).
Now we use the IT inequalities to lower bound the amount of information that the samples
contain about D:

I(D;XN
1 ) ≥ I(D; g(XN

1 )) = H(D)−H(D|g(XN
1 )).

Let each pair bins correspond to a bit.H(D) = n. We know that w.p atleast 2/3,D agrees
with g on 4n

5
of the n bits. So

H(D|g(XN
1 )) ≤ 2

3
log(

(
n

≤ n/5

)
) +

1

3
n ≤ 2

3
log(

en

n/5
)n/5 +

1

3
n < n(2

log 5e

15
+

1

3
) < 0.9n

Thus we have
I(D;XN

1 ) ≥ Ω(n).

In the next lecture we will show that each instance of this sample can contribute at most
O(ε2) information about D and that would prove that we need at least Ω( n

ε2
) samples to

learn the arbitrary distribution p.

5


