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Get samples from N(µ, I), ε-fraction have arbitrary errors, can we learn µ effi-
ciently to small error, i.e O(ε)? We want to return sample mean but it may not
work if there is a sufficient bad error that corrupts the data to much.
Idea: remove outliers
Suppose µ0 ≈ µ, define outliers as those far from µ0. How far from µ0 do we expect,
on average, it should be

|µ− x|2 ≈
√
n

we can throw out errors �
√
n from µ but this doesn’t solve the problem because

ε-fraction corruption can corrupt mean by ε
√
n

Another Idea: If |µ− µ̂|2 > δ then ∃ |v2| = 1 s.t. v(µ̂− µ) > δ. If we know v then
we can detect outliers

var(v · x) > 1 + ε
(δ
ε

)2
= 1 +

δ2

ε

Since var(v · x) = vT cov(x)v, consider eigenvalues of cov(x),there are two cases:

• All eigenvalues < 1 + δ2

ε
, this implies there is no such v and |µ− µ̂|2 ≤ δ

• If there is some eigenvector v with eigenvalue <1 + δ2

ε
, then we have

E[(vx− µv)2] > var(v · x)

> 1 +
δ2

ε

where µv denotes the mean of vx, with good samples contribute 1 and bad
samples contribute δ2

ε
This implies that decent fraction of bad samples have

|vx − µv| > δ
ε
and very few good samples have such attribute. Then we can

create a filter to throw out samples which satisfy |vx− µv| > δ
ε

Definiton: A set S of points is good w.r.t some Gaussian G if

• cov(S) = I ± ε(operator_norm)
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•
∫∞
lg( 1

ε
)
Prx∈S(v(x− µ) >

√
t)dt = O(εlg(1

ε
)) for any v with |v|2 = 1

• mean(S) ≈ µ

Given S
′ with ∆(S, S

′
) < ε, if S is good, an algorithm given any S

′ with
∆(S, S

′
) < ε can return a δ-approximation to µ

Proposal: Design an algorithm given S ′ returns either a δ-approximation to µ
or S ′′ with ∆(S

′′
, S

′
) < ∆(S, S

′
) where ∆(S, S

′
) is defined as:

∆(S, S
′
) =
|S ∆S

′ |
|S|

Let S ′
= S − SL + SE, |SL|

|S| = εL, |SE |
|S| = εE, where S represents a good set,

SL represents elements removed from the good set and SE represents new elements
added by the adversary.

cov(S
′
) = E[XTX]− E[X]TE[X]

=
Cov(S)− εL(cov(SL)) + εE(cov(SE))

1− εL + εE
+ cov(means)

• cov(S) = I ± ε

• εL(cov(SL) is small in operator norm
Proof: We need to show εL(var(vSL)) is small,

εL(cov(SL)) ≤ εL(var(vSL))

≤ εLE[(v(SL − µ)2)]

≤
∫ ∞

0

εL [fraction of elements in SL with (v(x− µ))2 > t] dt

≤
∫ ∞

0

min(εL, P rx∈S(|v(x− µ)| >
√
n))dt

≤ εLlog(
1

ε
)

• εE(cov(SE)) can be large but is positive semi-definite.

• cov(means) can be quite large if the µ we have is far from true µ.

Algorithm 1 Filter algorithm for a sub-Gaussian with unknown mean and identity
covariance

compute cov(S
′
)

if there is no large eigenvalues
return µ̂
otherwise produce a filter which returns a set S ′′ with ∆(S

′′
, S

′
) < ∆(S, S

′
)

This is just a high level idea, a lot of technical details are omitted here. For more
rigorous proof and more details, please refer to section 8 of paper http://cseweb.
ucsd.edu/~dakane/robustLearnHighDim.pdf
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